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Macroeconometrics Prior to 1980

▶ Macroeconomists estimated “structural” models in the tradition of Jan
Tinbergen (http://en.wikipedia.org/wiki/Jan_Tinbergen),
Trygve Haavelmo (http://en.wikipedia.org/wiki/Trygve_Haavelmo),
Art Goldberger (http://en.wikipedia.org/wiki/Arthur_Goldberger)
and Lawrence Klein (http://en.wikipedia.org/wiki/Lawrence_Klein)
since the 1920s.

1. Tinbergen: The concept of a macro model mixing behavioral equations
and resource and adding up constraints.

2. Haavelmo: Simultaneity/simultaneous systems and model evaluation.

3. Goldberger and Klein: The first Keynesian econometric model useful
for policy analysis.

▶ The goal was to use Keynesian macroeconometrics models to conduct
business cycles analysis and policy evaluation.
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Keynesian Macroeconometric Practice

▶ Estimated Keynesian macro model required aggregate data and armies
of graduate students to calculate regression estimates using mechanical
desk calculators and slide rules.

1. National Income and Product Accounts data were not released
by government statistical agencies until the early 1950s.

2. Mainframe computers become available for academic research
only in the mid 1950s.

▶ Haavelmo recognized estimates of early macro models were plagued
by simultaneity problems =⇒ 2SLS, 3SLS, etc.

▶ These estimators imply identifying restrictions that are not obvious.

▶ For example, Keynesian models were built from separate consumption,
investment, wage, price, government, financial, and monetary blocks
in the tradition of Goldberger and Klein.
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Sims’ Critique of Keynesian Econometric Practice

▶ Sims (1980, p. 1): “. . . the identification claimed for existing large-scale
models is incredible.” =⇒ Exclusion restrictions are ad hoc.

1. This is especially problematic in the Keynesian macro model
procedure of estimating a block of equations at a time.

2. Theory often offers little advice to guide the specification of model
dynamics =⇒ lengths of leads and lags.

3. Keynesian macro models violate the rational expectations hypothesis.

▶ Identification is about the likelihood of a model conditional on its
parameter vector.

1. A model is identified if there is not another parameterization (i.e.,
model) yielding a likelihood that is a scalar of the first.

2. The likelihood principle: The likelihood contains all the evidence
about model parameters that can be extracted from the sample data;
see Berger and Wolpert (1988, The Likelihood Principle, Beachwood,
OH: Institute of Mathematical Statistics),
http://www.jstor.org/discover/4355509?sid=21105069390931&
uid=2134&uid=2&uid=70&uid=4
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Another Intellectual Tradition in Macroeconometrics

▶ There is another tradition macro draws on to study business cycles and
evaluate monetary and fiscal policies.

▶ Eugen Slutzky shows sequences of unforecastable shocks can produce
business cycles in an article published in Russian in 1927 and republished
in English in Econometrica in 1937.

1. His insight is that summing white noise shocks or draws from a
Gaussian process generates time series with periodicity resembling
business cycles.

2. See http://en.wikipedia.org/wiki/Eugen_Slutsky.

▶ Ragnar Frish is responsible for the study of dynamics, innovation analysis,
and impulse response functions (IRFs).

1. These are tools that can be used to conduct business cycle analysis
and policy evaluation.

2. See http://en.wikipedia.org/wiki/Ragnar_Frisch.

▶ Slutzky and Frisch’s contributions are mostly forgotten by Keynesian macro.
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Vector Autoregressions

▶ Sims (1980) describes an alternative class of empirical macro models, which
builds on the tradition of Slutzky (1937) and Frisch (1933).

1. The alternative class of models is vector autoregressions (VARs).

2. Sims argues VARs avoid the arbitrary identification schemes
applied to Keynesian macro models.

▶ A VAR describes the dynamics of a vector (i.e., multivariate) time series, Yt .
1. For example, Yt =

[
RGDPt πt URt M1t RShort,t

]′.
2. The auto- and cross-covariance functions define the dynamics of Yt .

▶ These lecture notes sample the VAR literature that follows in the wake
of Sims (1980).
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Vector Autoregressions

▶ Sims describes an alternative class of empirical macro models.

▶ The alternative class of models is vector autoregressions (VARs).

▶ Sims argues VARs avoid the arbitrary identification schemes applied
to Keynesian macro models.

▶ A VAR describes the dynamics of a vector (i.e., multivariate) time series, Yt .
1. For example, Yt =

[
RGDPt πt URt M1t RShort,t

]′.
2. The auto- and cross-covariance functions define the dynamics of Yt .

▶ These lecture notes sample the VAR literature that follows in the wake
of Sims (1980).
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An Unrestricted VAR

▶ Consider a n× 1 vector process at date t, Yt that is assumed to be a
pth-order Gaussian vector autoregression (VAR), p a finite integer,

Yt = c + B
(
L
)
Yt−1 + εt ,

where c is a n× 1 vector of intercepts, B(L) =
∑p
j=1 BjL

j−1, Bj is a n×n
matrix of slope coefficients, εt ∼ N

(
0n×1, ΩΩΩ), and ΩΩΩ is a n×n (positive

definite) covariance matrix of the Gaussian error process εt .

▶ Data from t = −p + 1, −p + 2, . . . , −1, 0, 1, 2, . . . , T exists. Estimation of
the intercepts, c, matrices of slope parameters, Bj , j = 1, . . . , p, and error
covariance matrix, ΩΩΩ, requires the first p observations as conditioning
information for the sample that runs from t = 1, . . . , T .

▶ Since Yt is Gaussian, maximum likelihood estimation (MLE) dominates
other estimators. Form the conditional likelihood

fYT , ..., Y1|Y0, ..., Y−p+1

(
YT , . . . , Y1

∣∣∣Y0, . . . , Y−p+1; βββ
)
,

and maximize it with respect to βββ, where βββ =
(
c, B1, B2, . . . , Bp , ΩΩΩ).
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The Likelihood of an Unrestricted VAR

▶ Assuming normality of a VAR(p)’s errors yields the conditional density of Yt

Yt
∣∣∣Yt−1, Yt−2, . . . , Y−p+1 ∼ N

(
c + B

(
L
)
Yt−1, ΩΩΩ).

▶ Define Xt ≡
[
1 Yt−1 Yt−2 . . . Yt−p

]′
=⇒ Xt is a (np + 1)× 1 column

vector) and ΘΘΘ′ ≡ [c B1 B2 . . . , Bp
]

is a n× (np + 1) matrix.

Conditional density =⇒ Yt
∣∣∣Yt−1, Yt−2, . . . , Y−p+1 ∼ N

(ΘΘΘ′Xt , ΩΩΩ).
▶ This operation converts the VAR into a ‘static’ regression model. Regress Yt

on Xt =⇒ the joint (natural) log density of Yt is

ln
[
fYt
∣∣Yt−1, ..., Y−p+1

(
Yt
∣∣∣Yt−1, . . . , Y−p+1; βββ

)]
= −0.5

[
n ln

[
2π
]
− ln

[∣∣∣ΩΩΩ−1
∣∣∣] + (Yt − ΘΘΘ′Xt)′ΩΩΩ−1

(
Yt − ΘΘΘ′Xt)] .

▶ Other than assuming Gaussian errors, εt , and lag length p no restrictions
are imposed on the parameters of the VAR =⇒ the VAR is unrestricted.
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An Estimator of the Intercept and Slope Coefficients

▶ Construct the sample log likelihood of the VAR:

L
(ΘΘΘ, ΩΩΩ∣∣∣Y1, . . . ,YT

)
≡

T∑
t=1

ln
[
f
Yt
∣∣∣Yt−1, ..., Y−p+1

(
Yt
∣∣∣Yt−1, . . . , Y−p+1; βββ

)]

▶ Differentiate with respect to ΘΘΘ to compute the (conditional) MLE of ΘΘΘ.

Θ̂ΘΘ′ =
 T∑
t=1

YtX′t

 T∑
t=1

XtX
′
t

−1

.

▶ Row-by-row, the MLE ΘΘΘ is the ordinary least squares (OLS) estimator.
Line-by-line the ℓth row of ΘΘΘ is

Θ̂ΘΘ′ℓ =
 T∑
t=1

Yℓ,tX′t

 T∑
t=1

XtX
′
t

−1

.

▶ Consistent estimates of the parameters, the elements of the Bjs, can be
computed by OLS equation-by-equation for the unrestricted VAR

(
p
)
.
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An Estimator of the Covariance Matrix

▶ Remaining parameters of the unrestricted VAR(p) to estimate are in ΩΩΩ.

▶ Return to the conditional log likelihood of this VAR, substitute Θ̂ΘΘ into the
joint density of Yt and sum across all T observations to produce

L
(ΘΘΘ, ΩΩΩ∣∣∣Y1, . . . ,YT

)
= −1

2

nT ln
[
2π
]
− T ln

[∣∣∣ΩΩΩ−1
∣∣∣] + T∑

t=1

(
ε̂′tΩΩΩ−1ε̂t

) ,
where the residuals, estimates of the errors εt , ε̂t = Yt − Θ̂ΘΘ′Xt .

▶ Differentiate this expression with respect to ΩΩΩ to compute the MLE of ΩΩΩ
Ω̂ΩΩ = 1

T

T∑
t=1

ϵ̂t ϵ̂′t .

▶ MLE of an unrestricted VAR’s covariance matrix, Ω̂ΩΩ, is the covariance matrix
of the OLS residuals.
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The Likelihood of an Unrestricted VAR at Θ̂ΘΘ and Ω̂ΩΩ
▶ The log likelihood evaluated at Θ̂ΘΘ and Ω̂ΩΩ is

L
(ΘΘΘ, ΩΩΩ∣∣∣Y1, . . . ,YT

)
= −1

2

nT ln
[
2π
]
− T ln

[∣∣∣∣Ω̂ΩΩ−1
∣∣∣∣] + T∑

t=1

(
ε̂′tΩ̂ΩΩ−1

ε̂t
) .

▶ Next, apply the trace(·) operator, which sums all the diagonal elements

of a square matrix, to
∑T
t=1 ε̂

′
tΩ̂ΩΩ−1

ε̂t = trace
(∑T

t=1 ε̂
′
tΩ̂ΩΩ−1

ε̂t
)

= trace(Ω̂ΩΩ−1∑T
t=1 ε̂

′
t ε̂t) = trace

(Ω̂ΩΩ−1
TΩ̂ΩΩ) = trace

(
T In

)
= nT .

▶ The result is

L
(ΘΘΘ, ΩΩΩ∣∣∣Y1, . . . ,YT

)
= −T

2

(
n
(
1 + ln [2π]

)
− ln

[∣∣∣∣Ω̂ΩΩ−1
∣∣∣∣]) .
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Notes on Estimating Unrestricted VARs

▶ A problem is these MLEs are conditional on the lag length of the VAR
=⇒ p is a parameter of the VAR.

▶ If the unrestricted VAR approximates a VARMA(q1, q2), increase p
until the serial correlation in εt is eliminated.

▶ As p increases, the number of VAR parameters rises at rate n2

=⇒ given T , degrees-of-freedom (df) falls providing less power
for hypotheses tests.

▶ There exists a trade-off between increasing the lag length
of the VAR to whiten residuals and the loss of power
(i.e., information) to evaluate a VAR.
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Information Criteria for Choosing p

▶ The Akaike information criterion (AIC) captures this tradeoff

Minp AIC(p) = ln
(∣∣∣Ω̂ΩΩ∣∣∣) + 2pn2

T
.

▶ A similar rule for choosing p is the Bayesian Information Criterion (BIC)

Minp BIC(p) = ln
(∣∣∣Ω̂ΩΩ∣∣∣) + pn2 ln

(
T
)

T
.

▶ The Hannah-Quinn information criterion (HQC) selects p by

Minp HQC(p) = ln
(∣∣∣Ω̂ΩΩ∣∣∣) + 2pn2 ln ln

(
T
)

T
.

▶ Minimize the AIC, BIC, and HQC by selecting p from p = 1, . . . , K, where K
is a large integer.

1. As p increases, ln
(∣∣∣Ω̂ΩΩ∣∣∣) falls or is unchanged, but the penalty terms rise.

2. AIC assumes the VAR
(
p
)

is true, but the BIC and HQC do not =⇒ BIC and HQC
produce consistent estimates of p.

3. =⇒ AIC selects too large a p while BIC and HQC often yield more conservative p.
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A Likelihood Ratio Test to Choose p

▶ Another way to choose p is to compute a likelihood ratio (LR) test of the
null hypothesis of a VAR

(
p
)

against the alternative of a VAR(p + i).

▶ The null hypothesis is the i×n2 elements of Bp+i equal zero =⇒ a joint test
of restrictions imposed on the VAR

(
p
)

compared with the VAR(p + i).

▶ The LR test statistic is 2
(
L̂A − L̂0

)
= T

(
ln
[∣∣∣Ω̂ΩΩ0

∣∣∣] − ln
[∣∣∣Ω̂ΩΩA∣∣∣]), where

A and 0 denote the alternative and null hypothesis, respectively.

▶ To compute the LR test, estimate a VAR
(
p
)

and a VAR(p + i).
1. Construct the covariance matrix of the residuals of the VAR

(
p
)

and VAR(p+ i).
2. Under the null of the VAR

(
p
)
, call its estimated covariance matrix Ω̂ΩΩ0.

3. The VAR(p + i) is the alternative with estimated covariance matrix Ω̂ΩΩA.

▶ The LR test is asymptotically distributed χ2
(
n× i

)
, where the df = n× i,

the number of restrictions =⇒ the difference in the number of coefficients
of the VAR(p + i) and VAR

(
p
)
.
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Sims’ Likelihood Ratio Test to Choose p

▶ Sims (1980) proposes a degrees-of-freedom correction for the LR test

2
(
L̂A − L̂0

)
= (T − k)

(
ln
[∣∣∣Ω̂ΩΩ0

∣∣∣] − ln
[∣∣∣Ω̂ΩΩA∣∣∣]) ,

to correct for small sample bias, where k = 1 + ni represents the number
of coefficients excluded from the VAR0. Subtracting k from T, reduces
the size of the LR statistic, which makes the test more conservative w/r/t
the choice of p =⇒ the LR test is less likely to reject the null hypothesis
for the sample sizes typically encountered in macro.

▶ The last issue for the choice of p concerns how to perform the sequence
of LR tests of p = 1, 2, . . .. At this moment, the accepted procedure is
to move from the general null hypothesis to more specific null hypotheses.
This moves p from a large integer K, say for quarterly macro data of 12 or
16, to smaller values. The first occurrence of a LR test statistic at or below
the appropriate significance level determines p.
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The Autocovariance Function of a VAR

▶ The claim of no restrictions other than εt is Gaussian is applied
to the VAR(p), Yt = c + B (L)Yt−1 + εt , is not quite correct.

▶ Several restrictions have to be imposed on the Bjs to guarantee consistency

and efficiency =⇒
√
T
(Θ̂ΘΘ −ΘΘΘ) ∼ N (

0, ΩΩΩ⊗[∑T
t=1 XtX

′
t

]−1)
.

▶ These restrictions ensure that Yt is stationary, which give

1. the unconditional mean: EYt = µY =⇒ define Xt ≡ Yt − µY , and

2. the unconditional jth autocovariance matrix: E
{
XtX′t−j

}
= ΓΓΓ j ,

3. =⇒ µY and ΓΓΓ j are finite and independent of time.

4. But ΓΓΓ j ≠ ΓΓΓ−j =⇒ ΓΓΓ j = E
{
XtX′t−j

}
≠ E

{
XtX′t+j

}
= ΓΓΓ−j .

5. Rather than lag the jth autocovariance, lead it j periods =⇒
E
{
Xt+jX

′
t

}
= ΓΓΓ j and take transposes to find E

{
XtX′t+j

}
= ΓΓΓ ′j = ΓΓΓ−j
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The Companion Form of a VAR

▶ Computing the unconditional mean and especially the covariance
generating process of Yt when its data generating process (DGP) is
the Gaussian VAR(p), Yt = c + B

(
L
)
Yt−1 + εt , appears difficult.

▶ The unconditional mean is µY =
[
In − B

(
1
)]−1 c, where B

(
1
)
=
∑p
j=1 Bj .

However, this calculation assumes that In − B
(
1
)

is not singular.

▶ Assume µY exists =⇒ the “demeaned” VAR(p) is Xt = B
(
L
)
Xt−1 + εt .

▶ The demeaned VAR(p) can be represented as a VAR(1), Zt = FZt−1 + Vt ,
where Zt =

[
X′t X′t−1 . . . X′t−p+1

]′
, Vt =

[
ε′t 01×p . . . 01×p

]′
,

F =


B1 B2 . . . Bp−1 Bp
In 0n×n . . . 0n×n 0n×n
0n×n In . . . 0n×n 0n×n...

...
. . .

...
...

0n×n 0n×n . . . In 0n×n

 , and E
{
VtV ′

t

}
= Q.

▶ The VAR(1), Zt = FZt−1 + Vt , is the companion form of the VAR(p)
and F is the companion matrix.
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The VMA(∞) of a VAR(1)

▶ The companion form of a VAR has some useful features.

1. The vector MA(∞) is Zt = [In − F L]−1Vt =
∑∞
j=0 FjVt−j ,

2. which assumes that F is not singular.

3. Non-singularity of F rests on it having no roots or eigenvalues > 1

in absolute value =⇒ search for
∣∣λ∣∣s < 1 that set

∣∣∣F − λIn2

∣∣∣ = 0.

4. This is equivalent to finding the determinant of the VAR(p)∣∣∣λIn − λp−1B1 − λp−2B2 − . . . − λBp−1 − Bp
∣∣∣ = 0.

▶ A VAR(p) has autocovariance matrices independent of time if its
eigenvalues are outside the unit circle.

1. The impact on Yt of a unit increase in εt decays to zero
in a finite span of time.

2. The VAR(p) is covariance stationary when its Bjs are
restricted to have λs ∈

(
−1, 1

)
.
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Computing the Autocovariances of a VAR(1)

▶ Pass the covariance operator through the VAR(1)

E
{
ZtZ′t

}
= E

{(
FZt−1 +Vt

)(
FZt−1 +Vt

)′}
= F E

{
Zt−1Z′t−1

}
F′ + E

{
VtV ′

t

}
ΣZ = FΣZF′ + Q.

▶ The covariance matrix of Zt , ΣZ, is nonlinear function of F and Q
(because of the quadratic term FΣZF′).

1. The vec(·) operator linearizes ΣZ = FΣZF′ + Q, which stacks columns
of the matrix to form a vector.

2. =⇒ vec
(ΣZ) = vec

(
FΣZF′

)
+ vec

(
Q
)
.

3. Since vec
(
ABC

)
=
(
C′
⊗

A
)
vec
(
B
)
,
[
In2 − F

⊗
F
]
vec
(ΣZ) = vec

(
Q
)
.

=⇒ Lag zero autocovariances are vec
(ΣZ) = [In2 − F

⊗
F
]−1vec

(
Q
)
.

4. Lag j autocovariances are E
{
ZtZ′t−j

}
= E

{
FZt−1Z′t−j

}
+ E

{
VtZ′t−j

}
=⇒ ΣZ,j = FΣZ,j−1 = FjΣZ.
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Computing the Autocovariances of the VMA(∞) of the VAR(1)

▶ Pass the covariance operator through VMA(∞), Zt =
∑∞
j=0 FjVt−j

ΣZ =
∞∑
j=0

E
{
FjVt−jV

′
t−jF

j′
}

=
∞∑
j=0

FjQFj′

vec
(ΣZ) =

∞∑
j=0

(
Fj
O

Fj
)

vec
(
Q
)

=
[
In2 − F

O
F
]−1

vec
(
Q
)
.
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Computing the Autocovariances of a VMA(∞) in General

▶ Given the VAR(p), Yt = c + B
(
L
)
Yt−1 + εt , is stationary, the implied VMA(∞)

is Yt = µY +
∑∞
ℓ=0 Cℓεt−ℓ, where C

(
L
)
=
[
In − B

(
L
)]−1 and C0 ≡ In.

▶ The autocovariances are

E
{(
Yt − µY

)(
Yt − µY

)′}
=

∞∑
ℓ=0

E
{
Cℓεt−ℓε

′
t−ℓC

′
ℓ

}

ΓΓΓ0 =
∞∑
ℓ=0

CℓΩΩΩC′ℓ.

E
{(
Yt − µY

)(
Yt−s − µY

)′}
=

∞∑
ℓ=0

E
{
Cℓεt−ℓε

′
t−ℓ−sC

′
ℓ

}

ΓΓΓ s =
∞∑
ℓ=0

Cs+ℓΩΩΩC′ℓ.
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Restrictions on the VMA(∞) to Guarantee Stationarity

▶ Restrictions are needed on the Cjs of the VMA(∞) to guarantee ΓΓΓ s is
independent of time s = 0, 1, . . . , k, . . . .

1. The Cjs are nonlinear functions of the Bjs, which implies invertibility.

2. Next, Yt and εt have bounded fourth moments to ensure µy and the
diagonals of ΓΓΓ0 are ergodic (i.e., the sample average converges to the
average of sample averages as T -→ ∞).

▶ The Cℓs are absolutely summable,
∑∞
ℓ=0

∣∣∣Cℓ,i,j∣∣∣ < ∞, i, j = 1, 2, . . . , n, or

element by element the sum of the absolute values of the Cℓs are finite.

1. Absolute summability places strong restrictions on the Cℓs in the
speed of convergence to finite values element by element.

2. A weaker restriction is squared summability,
∑∞
ℓ=0 C

2
ℓ,i,j < ∞.

3. In either case, element by element the Cℓs have smaller and smaller
increments as ℓ -→ ∞.
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VMA(∞)s and Fundamentalness

▶ The implied VMA(∞), Yt = µY +
∑∞
ℓ=0 Cℓεt−ℓ, has an important feature.

▶ Consider constructing a forecast of Yt+1, EtYt+1.

1. The forecast innovation is Yt+1 − EtYt+1 = εt+1.

2. Similarly, the h-step ahead innovation is Yt+h − EtYt+h = εt+h.

3. The innovation, or news, about Yt+h between dates t and t+h
is εt+h given the VMA(∞) is the true DGP of Yt .

4. This explains the assumption that C0 is the identity matrix.

5. Since the only news about Yt+h between dates t and t+h is εt+h,
it is fundamental for Yt+h.

▶ Knowledge of fundamental errors is necessary to produce Yt .
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VMA(∞)s and Fundamentalness: A Counterexample

▶ Start with Yt = µY +
∑∞
ℓ=0 Cℓεt−ℓ.

▶ Multiply εt by G to produce νt ≡ Gεt , where G is nonsingular.

▶ Use this definition in Yt = µY +
∑∞
ℓ=0 CℓG

−1Gεt−ℓ = µY +
∑∞
ℓ=0 Kℓνt−ℓ,

where Kℓ ≡ CℓG
−1 =⇒ a VMA(∞) is not unique.

▶ Suppose that ΩΩΩν = E
{
Gεtε

′
tG
′
}
= GΩΩΩG′ is diagonal.

▶ Forecasts of Yt produced by
∑∞
ℓ=0 Kℓνt−ℓ do not yield fundamental errors.

▶ Although ΩΩΩν is diagonal,

1. G is not necessarily a triangular matrix (i.e., endows the elements
of εt with a recursive ordering).

2. Instead, νt consists of linear combinations of the elements of εt .
3. These linear combinations of the elements of εt (=

[
ε1,t . . . εn,t

]′)
are not the errors fundamental for Yt .

4. =⇒
∣∣∣K0ΩΩΩνK′0

∣∣∣ ≯ ∣∣∣KℓΩΩΩνK′ℓ

∣∣∣, but
∣∣∣C0ΩΩΩC′0

∣∣∣ > ∣∣∣CℓΩΩΩC′ℓ

∣∣∣, ℓ ≥ 1.
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VMA(∞)s and Fundamentalness: The Wold Decomposition Theorem

▶ Fundamentalness suggests a VMA(∞) is a mapping that recovers εt given
the data, Yt , or having knowledge of εt the data can be produced.

▶ Wold Decomposition Theorem states minimum necessary and sufficient
conditions for a VMA(∞) to be a fundamental representation of Yt and εt .

▶ Wold Decomposition Theorem: Any mean zero, covariance stationary
process,

{
Yt
}∞
t=−∞, can be represented as Yt =

∑∞
j=0 Cjεt−j + κt , C0 = In,

conditional on the restrictions
1. εt is mean zero, Eεt = 0, linearly unpredictability given past history,

E
{
εt+h

∣∣∣εt , εt−1, . . . , Yt , Yt−1, . . .
}
= 0, h ≥ 1, is serially uncorrelated

with its own history, Et
{
εtε

′
t−j
}
= 0, and history of Yt , Et

{
εtY′t−j

}
= 0,

j ≥ 1, and homoskedastic, E
{
εtε

′
t
}
= ΩΩΩ,

2. the roots of C
(
L
)

all lie on or outside the unit circle =⇒ C
(
L
)−1 exists,

3. sequence of Cjs are square summable,
∞∑
ℓ=0

C2
j,i,ℓ <∞, i, ℓ = 1, 2, . . . , n,

4. and κt is linearly deterministic (i.e., any class of known, fixed functions
can enter the stochastic process Yt).
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The Wold Decomposition Theorem: Dos and Don’ts

▶ The WDT is a framework that (a) connects stochastic difference equations
to a general class of stationary stochastic processes (i.e., VARMA models)
and (b) provides restrictions on the building block of the stochastic process,
the white noise process εt .

▶ The WDT does not need εt ∼ IID and/or normal (i.e., Gaussian).

1. Linear unpredictability of εt given past history places strong
restrictions on the class of models relevant for the WDT.

2. =⇒ Only linear regressions, Yt = c +
∑p
j=1 BjYt−j + εt , p < ∞,

matter for the WDT and for constructing εt .
3. But, in general, the linear regression could have time-varying

parameters =⇒ µY,t , Bj,t , and ΩΩΩt .
▶ Proofs of the WDT do not depend on assumptions about Yt .

1. There is nothing about linearity or stationarity =⇒ E{·} does not
require Yt to be a linear or stationary stochastic process a priori.

2. If Yt is not stationary, alter the sample data to render it so.
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Moving Beyond the Wold Decomposition Theorem: Granger-causality

▶ The WDT is a device for recovering the fundamental errors of Yt using
a VMA(∞), or the converse.

▶ Relationships between the elements of Yt are about something else.
An example is Granger-causality (GC).

▶ GC is about the ability of the history of one time series to predict
or forecast the future path of another time series.

▶ There is no economic structural interpretation to be given
to a finding of GC or the lack thereof.

▶ Although evidence of GC does not provide information about
fundamentalness, GC can be informative about the dynamic
responses of left hand side variables to fundamental errors.
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Statistical and Economic Predictability

▶ The concept underlying GC is about prediction.

1. GC exploits the current response of a scalar time series Y1,t ,
2. to movements in the history of a second scalar time series, Y2,t
3. =⇒ GC is about bivariate relationships.

▶ Definition: Y2,t Granger-causes Y1,t if Y2,t contributes to forecasts
of Y1,t , given the past history of Y1,t , Y1,t−1, . . . , Y1,t−j .

▶ Once the ability of a variable’s own past to forecast itself is removed,
use GC to ask, “Is there any variation left in the future path of Y1,t
for the history of Y2,t , Y2,t−1, . . . , Y2,t−j to forecast?”

▶ Only two variables are being considered here. When Y2,t is a vector,
the concept of GC is more difficult to analyze.
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An Example of Granger-Causality

▶ Suppose Y1,t and Y2,t are scalars =⇒ Y1,t

Y2,t

 =

 B11
(
L
)

B12
(
L
)

B21
(
L
)

B22
(
L
)

 Y1,t−1

Y2,t−1

 +

 ε1,t

ε2,t

 .
▶ Granger-causality implies Y2,t does not Granger-cause Y1,t if B12

(
L
)
= 0 Y1,t

Y2,t

 =

 B11
(
L
)

0

B21
(
L
)

B22
(
L
)

 Y1,t−1

Y2,t−1

 +

 ε1,t

ε2,t

 .
▶ Y1,t has a univariate AR

(
p
)

representation because B12
(
L
)
= 0, which gives

the VAR matrix a lower triangular representation 1 − B11
(
L
)
L 0

−B21
(
L
)
L 1 − B22

(
L
)
L


 Y1,t

Y2,t

 =

 ε1,t

ε2,t

 .
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▶ Since [Y1,t Y2,t]′ is covariance stationary and has a VAR
(
p
)

representation,
the vector MA(∞) process is Y1,t

Y2,t

 = B̃
(
L
)−1

 1 − B22
(
L
)
L B12

(
L
)
L

B21
(
L
)
L 1 − B11

(
L
)
L


 ε1,t

ε2,t

 ,
where B̃

(
L
)
= [1 − B11

(
L
)
L][1 − B11(L)L] − B12

(
L
)
B21(L)L2.

▶ A lack of GC from Y2,t to Y1,t holds, given the Wold MA matrix lag
polynomial is lower triangular =⇒ Y1,t possesses a univariate Wold

representation, Y1,t = B̃
(
L
)[

1 − B22
(
L
)
L
]
ε1,t .

▶ A projection of Y1,t on itself and Y2,t is equivalent to a projection
of Y1,t only on itself =⇒ Y1,t is only a function of ε1,t .

▶ The null hypothesis of GC is a statement that some subset of VAR
coefficients equals zero. That is, the null hypothesis of a test of
Granger-causality is that Granger-causality does not exist.
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Comments about Granger-Causality

▶ Put most simply, a test for Granger-causality reveals information about the
ability of one time series to forecast another time series conditional on the
variables that enter the VAR

(
p
)
.

▶ When this information is combined with economic theory, it might be
possible to make statements about the direction of Granger-causality.

▶ GC tests are often not robust to small changes in the VAR.

▶ There are examples in which the implications of tests for Granger-causality
are reversed either by introducing new variables to the VAR

(
p
)

or simply by
changing the lag length of the VAR

(
p
)

to p + i for some finite i.

▶ When additional variables are added to the VAR, say, a single variable Y3,t ,
then, the response of Y1,t to the history of Y2,t through the history of Y3,t
must be considered (the only way to avoid this problem in VARs with n > 2
is to restrict p = 1; see Dufour and Renault (1998, “Short-run and long-run
causality in time series: Theory,” Econometrica 66, 1099–1125) and Dufour,
Pelletier, and Renault (2006, “Short-run and long-run causality in time
series: Inference,” Journal of Econometrics 132, 337–362).
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The Shape of the Response of Yt to a Shock to εi,t

▶ Perhaps the most common use of VARs is to ask about the response of a
left hand side (dependent) variable to some (unobserved) shock.

▶ The tool that answers this question is the impulse response function (IRF).

▶ An IRF is the dynamic response or multiplier of a dependent variable to a
one unit change in the ith innovation, εi,t , of the VAR.

▶ It is easy to compute IRFs.

▶ When economists attempt to give economic meaning to an IRF, there are
often difficulties.

▶ Suggests the need to employ economic theory to provide structural
interpretations to an IRF and its associated shock.
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Computing Impulse Response Functions, I

▶ A VAR(p) possesses a VMA(∞) representation Yt =
∑∞
i=0 Ciεt−i, C0 = In,

given the invertibility of In − B
(
L
)

and ignore the intercept µY .

▶ By implication, the h-step ahead conditional expectation is

EtYt+h =
∞∑
j=0

Cj+hεt−j ,

▶ EtYt+h provides information about the expected response of any element
of Yt+h to any element of εt−j =⇒ the information is embedded in the Cjs.

▶ The idea behind the IRF is the response of an element of Yt to one of the
fundamental shocks, an element of εt .

▶ The Wold representation is a difficult way to compute IRFs.

▶ A simple method for generating IRFs is to write the VAR
(
p
)

as a VAR(1).
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Computing Impulse Response Functions, II

▶ The VAR
(
p
)
’s companion form, Zt = FZt−1 + Vt , yields the conditional

expectation or h-step ahead forecast

EtZt+h = FhZt , h = 1, 2, . . . .

▶ The VAR(1) is also associated with the VMA(∞), Zt =
∑∞
j=0 FjVt−j .

▶ The IRF of Yi,t to εℓ,t+j is

IRFi, ℓ
(
h
)
≡
∂Yi,t+h
∂εℓ,t

=
[
Fh
]
i, ℓ
, h = 1,2, . . . ,H,

where
[
·
]
i, ℓ denotes the (i, ℓ) element of the matrix Fh, i, ℓ = 1, 2, . . . , n.
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Notes about IRFs

▶ The Wold representation answers the question the IRF asks.

1. =⇒ Information about the response of Yi,t , i = 1, . . . , n,
2. to a one unit change in the ℓth fundamental shock, εℓ,t .

▶ The IRFi, ℓ
(
h
)

captures this information at the h-step ahead horizon

=⇒ need the sequence of matrix powers of F, Fj , and ΩΩΩ.

▶ IRFs are forecasting statements tracing the dynamic shape of the response
of Yi,t+h to a one unit change in εℓ,t , h = 0, 1, 2, . . . , H =⇒ the Fjs.

▶ But at j = 0, Fj = In =⇒ ΩΩΩ is only other information available to compute
the impact response at lag zero.

▶ Nothing is revealed about how fundamental shocks drive the variability
of fluctuations (i.e., forecasting the magnitude) in Yt+h.
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Identifying IRFs

▶ The discussion about IRFs ignores the problem of separating the impact on
Yi,t of a one unit change in εℓ,t from the response of εm,t to the change in
εℓ,t , m ≠ ℓ.

▶ No method exists to isolate or identify these one unit movements, say, of
εℓ,t independently of εm,t grounded only in the data, Yt .

▶ The properties of Yt alone will not help to construct a set of shocks that
identify the economic responses of the data to a one unit movement in εℓ,t .

▶ The point is that to give a meaningful economic interpretation to IRFs the
shocks have to be identified =⇒ compute the dynamic impact of εℓ,t on Yi,t ,
i = 1, . . . , n, conditional on an estimated VAR

(
p
)
.

▶ Separating or isolating the effect of εℓ,t from εm,t implies these errors are
orthogonal, but ΩΩΩ is unrestricted other than it is positive definite.
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The Cholesky Decomposition Orthogonalizes VAR Innovations

▶ One way to identify VAR shocks is

1. to orthogonalize the innovations of a VAR
(
p
)
.

2. =⇒ use the covariance matrix of the VAR innovations, ΩΩΩ.

▶ Since ΩΩΩ is a (symmetric) positive definite matrix, the Cholesky
decomposition produces a triangular representation.

1. Let D be the Cholesky decomposition of ΩΩΩ, where ΩΩΩ0.5 = D
=⇒ ΩΩΩ = DD′.

2. Hence, D is a lower triangular matrix =⇒ zeros above the diagonal.

3. However, the Cholesky decomposition is only one of several
decompositions of positive definite matrices.
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The Cholesky Decomposition

▶ Let a 3×3 symmetric matrix A =

 a11 a21 a31
a21 a22 a32
a31 a32 a33

 be positive definite.

▶ Its Cholesky decomposition is A0.5 =


l11 0 0

l21 l22 0

l31 l32 l33

, where l11 =
√a11,

l21 =
a21

l11
, l31 =

a31

l11
, l22 =

√
a22 − l 2

21, l32 =
a32 − l31l21

l22
, and

l33 =
√

a33 − l 2
31 − l 2

32, which is a set of recursive equations.

▶ The general formulas for the Cholesky decomposition of a n×n symmetric

positive definite matrix are lii =
√

aii −
∑i−1
j=1 l 2

ij and lij =
aij −

∑j−1
ℓ=1 liℓljℓ
ljj

,

where i > ℓ, the sums are zeros when i = 1, and i, j = 1, 2, . . . , n.
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Constructing Structural Shocks for a VAR

▶ Orthogonalized shocks give meaningful economic content to IRFs.

▶ The structural shocks ηt ∼ N
(
0n, In

)
=⇒ orthogonalized shocks.

1. Structural shocks are uncorrelated and have unit variance.

2. The mapping from the reduced-form errors, εt , to ηt is εt = Dηt .
3. Reduced-form errors are linear combinations of the structural shocks.

▶ Calculate a linear combination of ηt using ηt = D−1εt =⇒ Yt =
∑∞
j=0 Gjηt−j ,

where the IRFs are Gj = CjD, j = 0, 1, . . . , ∞, and C0 = In yielding G0 = D.

▶ An implication of the Cholesky decomposition is

DE
{
ηtη

′
t

}
D′ = E

{
εtε

′
t

}
=⇒ DΩΩΩηD′ = ΩΩΩ =⇒ E

{
ηtη

′
t

}
= In.
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Cholesky or Recursive Ordering

▶ The problem is the Cholesky decomposition is not unique =⇒ there exist
a (countably) infinite ways to rotate ΩΩΩ to generate D.

▶ Sims (1980) works with a Wold representation of a VAR
(
p
)

that imposes
a lower triangular restriction on G0 = D =⇒ a recursive identification.

▶ The bivariate MA(∞) used to study Granger-causality is an example
=⇒ B12

(
L
)
= 0.

▶ This example shows Sims proposes to order the elements of εt recursively.

1. Only ε1,t is fundamental for Y1,t ,
2. a linear combination of ε1,t and ε2,t is fundamental for Y2,t ,
3. a linear combination of ε1,t , ε2,t , and ε3,t is fundamental for Y3,t ,
4. . . . to a linear combination of ε1,t , . . . , εn−1,t , is fundamental for Yn,t .
5. A Cholesky decomposition of ΩΩΩ =⇒ a recursive identification same as

just-identified IV, where ε1,t , . . . , εn−1,t are the instruments.

▶ Giving an economic interpretation to this identification scheme, or any
scheme, is central to the study and implementation of structural VARs.
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Sims’ Recursive Ordering and Identification

▶ The Cholesky decomposition generates a lower triangular representation,
which is Sims’ orthogonalization.

▶ Sims’ orthogonalization or recursive ordering yields a just-identified system.

1. Remember that ΩΩΩ is a covariance matrix =⇒ it is symmetric.

2. The dimensions of ΩΩΩ give a n×n matrix =⇒ n2 elements.

3. A Cholesky decomposition of ΩΩΩ is also a n×n matrix, but it places
zeros above (or below) the diagonal.

4. =⇒ There are 0.5n
(
n+1

)
elements left unrestricted by a Cholesky

decomposition =⇒ count the unrestricted diagonal elements.

5. A recursive identification restricts 0.5n
(
n−1

) [
= n2 − 0.5n

(
n+1

)]
elements of D to = 0 =⇒ D is a lower (or upper) triangular matrix.

▶ A recursive identification produces a just-identified structural VAR
grounded in hypotheses that cannot be tested directly.
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Notes about Identified IRFs

▶ An economic interpretation of a SVAR identification scheme is an
econometric measurement of movements in Yi,t generated by a small
changes in ηℓ,t .

▶ However, there are free parameters when computing identified IRFs.

▶ The height of IRFs at impact has to be restricted a priori.
1. Under a recursive identification, the impact matrix, G0

(
= D

)
,

is a nonlinear function of ΩΩΩ.

2. Choice of G0,i,ℓ, ℓ = i, on which to normalize the remaining diagonal
elements of G0 is not arbitrary =⇒ the choice can affect (the shape of)
the likelihood of the SVAR.

3. A “rule” for G0,i,ℓ that leaves the likelihood unchanged sets G0,ℓ,ℓ > 0,

ℓ = 1, . . . , n =⇒ “estimate” Ĝ0,ℓ,ℓ =
∣∣∣G0,ℓ,ℓ

∣∣∣.
▶ Normalization of the impact matrix of an identified set of IRFs is more

difficult under non-recursive identification schemes; see Waggoner and Zha
(2003, “Likelihood preserving normalization in multiple equation models,”
Journal of Econometrics 114, 329–347).

Jim Nason
(
BVARs: Lecture 1

)
Empirical Methods: Introduction to VARs



Sims: Macroeconomics and Reality

Estimating Unrestricted VARs

Fundamentals and VARs

Impulse Response Functions

Forecast Error Variance Decompositions

Confidence Bands for IRFs

▶ Easy to compute standard errors of Bjs and ΩΩΩ =⇒ OLS or SUR estimators.

▶ Difficult to obtain good numerical estimates of IRF covariance matrices.

1. The problem is not a lack of an asymptotic distribution for the IRFs;
see Mittnik and Zadrozny (1993, “Asymptotic distributions of
impulse responses, step responses, and variance decompositions
of estimated linear dynamic models,” Econometrica 61, 857–870).

2. They show IRF(h
)

is asymptotically normal, given IRFs are nonlinear
functions of the Bjs and ΩΩΩ.

3. The variance of IRF(h
)

is asymptotically distributed χ2
(
1
)
.

▶ Numerical computation of IRF covariance matrices rely either on an
asymptotic approximation or simulation methods.
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Asymptotic Approximation of Confidence Bands for IRFs

▶ The δ-method is used to construct an approximation of the asymptotic
distribution of the IRF covariance matrix.

▶ Using the definition IRF(h
)
≡ IRF

(
h, β

)
, the δ-method employs

√
T
(
ÎRFi, ℓ(h

)
− IRFi, ℓ(h

))
∼ N

(
0,
∂IRFi, ℓ(h, βββ

)
∂vec

(
βββ
) ΩΩΩβββ ∂IRFi, ℓ(h, βββ

)
∂vec

(
βββ
) ′)

.

▶ Approximate standard errors by the ratio of the total derivative of the
date t+h forecast error to the total derivative of

∑H
j=0 Fj .

▶ These standard errors of IRFs have

1. poor small sample properties for sample sizes, T , typical in macro,

2. empirical distributions far from χ2 in large samples, given persistence
in Yt (i.e., near unit roots),

3. and inherent properties of the estimated standard errors of the Bjs
and ΩΩΩ, which are often large relative to the point estimates.
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Confidence Bands for IRFs using Bootstrap Simulation

▶ The bootstrap is a nonparametric method for generating an empirical
distribution of the IRFs from h = 0, 1, . . . , H.

1. Nonparametric =⇒ does not invoke parametric assumptions about Bj and/or εt
to generate synthetic samples of the IRFs.

2. Empirical distributions =⇒ small sample distributions built from estimated
VAR.

▶ Bootstrapped IRF confidence bands resample ε̂t with replacement to create
K synthetic samples of length T of the VAR’s errors.

1. Random shuffling of
{
ε̂t
}T
t=0 produces

{{
ε̃kt
}T
t=1

}K
k=1

.

2. Generate
{{
Ỹkt
}T
t=1

}K
k=1

using
{{
ε̃kt
}T
t=1

}K
k=1

and the OLS estimates

of the VAR(p) =⇒ B̂j , j = 1, 2, . . . , p =⇒ do not resample the B̂js.

3. Estimate the VAR(p) on the K synthetic samples,
{{
Ỹkt
}T
t=1

}K
k=1

,

construct
{
G̃k0
}K
k=1

as described above to produce

the bootstrapped empirical distribution

{{
ĨRF

k
(h
)}H
h=0

}K
k=1

.
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Notes on Bootstrapped Confidence Bands for IRFs

▶ There are problems when computing bootstrapped IRF confidence bands.

1. Bootstrapped distributions of IRF(h
)

are often not symmetric.
2. Non-normal distributions suggest reporting percentiles instead of

standard deviations, especially for the sample sizes found in macro.
3. Bootstrapped IRF confidence bands require ε̂t ∼ WN , otherwise

biased confidence bands.
4. Resampling is sensitive to the units in which Yt is measured.
5. Change method for rendering Yt stationary =⇒ alter shape of

bootstrapped IRF confidence bands, which affects inference.
6. OLS estimates of the Bjs are biased downward =⇒ this bias is

transmitted into the bootstrapped IRFs.
7. Set K large enough to produce small simulation error; see Andrews

and Buchinsky (2000, “A three-step method for choosing the number
of bootstrap repetitions,” Econometrica 68, 23–51).

8. See Pesavento and Rossi (JAE, 2006 and JEDC, 2007) for proposed
solutions in small samples.
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Building Blocks for Bayesian Confidence Bands for IRFs, I

▶ Remember a VAR(p) has a static regression representation, Yt = ΘΘΘ′Xt + εt , whereΘΘΘ is n× (np + 1), Xt is (np + 1)× 1, and εt ∼ N
(
0n×1, ΩΩΩ).

▶ Denote YYYT×n =
[
Y1 Y2 . . . YT

]′
, XXXT×np =

[
X1 X2 . . . XT

]′
, BBB(np+1)×n =

[
B′1 B′2 . . . B′p

]′
,

and ΞΞΞT×n = [ε1 ε2 . . . εT
]′ =⇒ a static simultaneous equations system YYY = XXXBBB + ΞΞΞ.

▶ The regression for Yj,t is the jth row of this system =⇒ YYYj = XXXBBBj + ΞΞΞj .
▶ Columns of the j (= 1, 2, . . . , n) regressions are stacked in ascending order to obtain

yyy =
(
In
⊗

XXX
)
bbb + ξξξ ≡ XXXbbb + ξξξ, where yyy and ξξξ are nT × 1 column vectors, bbb = vec

(
BBB′
)
,

and XXX is a nT ×n(np + 1) matrix =⇒ organize regressions in blocks of rows.

▶ Given several assumptions, show the likelihood of the stacked system of regressions
of the VAR(p) crosses the conditional (on the B̂js) normality of bbb with the Wishart

distribution of ΩΩΩΩΩΩΩΩΩ−1
ξξξ , where E

{
ξξξξξξ′

}
=ΩΩΩΩΩΩΩΩΩξξξ = ΩΩΩ ⊗ IT .

▶ Bayesian Monte Carlo simulation generates the distribution of IRFs given the data, yyy,
the VAR(p), and prior information on bbb and ΩΩΩΩΩΩΩΩΩξξξ .

Jim Nason
(
BVARs: Lecture 1

)
Empirical Methods: Introduction to VARs



Sims: Macroeconomics and Reality

Estimating Unrestricted VARs

Fundamentals and VARs

Impulse Response Functions

Forecast Error Variance Decompositions

Building Blocks for Bayesian Confidence Bands for IRFs, II

▶ The likelihood of the VAR(p), yyy =
(
In
⊗

XXX
)
bbb + ξξξ, ξξξ ∼ N

(
0nT×1, ΩΩΩξξξ), is

H
(
bbb, ΩΩΩξξξ∣∣∣yyy) ∝∝∝

∣∣∣ΩΩΩξξξO IT
∣∣∣−0.5

× exp
{
−1

2

[
yyy−

(
In
O

XXX
)
bbb
]′(ΩΩΩ−1

ξξξ

O
IT
)[
yyy−

(
In
O

XXX
)
bbb
]}
.

▶ The goal is to factor H
(
bbb, ΩΩΩξξξ∣∣∣yyy) (= exp

{
L
(
bbb, ΩΩΩξξξ∣∣∣yyy)}) into recognizable

prior distributions from which posterior (synthetic) distributions can be
drawn by Monte Carlo simulations.

▶ The term inside exp
{
·
}

can be factored as[
yyy−
(
In
O

XXX
)
bbb
]′(ΩΩΩ−1

ξξξ

O
IT
)[
yyy−
(
In
O

XXX
)
bbb
]

=
(ΩΩΩ−0.5

ξξξ

O
IT
)[
yyy−

(
In
O

XXX
)
bbb
]′(ΩΩΩ−0.5

ξξξ

O
IT
)[
yyy−

(
In
O

XXX
)
bbb
]

=
[(ΩΩΩ−0.5

ξξξ

O
IT
)
yyy−

(ΩΩΩ−0.5
ξξξ

O
XXX
)
bbb
]′ [(ΩΩΩ−0.5

ξξξ

O
IT
)
yyy−

(ΩΩΩ−0.5
ξξξ

O
XXX
)
bbb
]
.
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Building Blocks for Bayesian Confidence Bands for IRFs, III

▶ The OLS estimator of b̂̂b̂b =
[ΩΩΩ−1

ξξξ

O
XXX′XXX

]−1[ΩΩΩ−1
ξξξ

O
XXX
]′
yyy.

▶ Add and subtract b̂̂b̂b from bbb in
[(ΩΩΩ−0.5

ξξξ

O
IT
)
yyy−

(ΩΩΩ−0.5
ξξξ

O
XXX
)
bbb
]

(ΩΩΩ−0.5
ξξξ

O
IT
)
yyy−

(ΩΩΩ−0.5
ξξξ

O
XXX
)(

bbb− b̂̂b̂b+ b̂̂b̂b
)

=
(ΩΩΩ−0.5

ξξξ

O
IT
)
yyy−

(ΩΩΩ−0.5
ξξξ

O
XXX
)
b̂̂b̂b+

(ΩΩΩ−0.5
ξξξ

O
XXX
)(

bbb− b̂̂b̂b
)
.

▶ Use this result to reconstruct the likelihood of the VAR(p),

H
(
bbb, ΩΩΩξξξ∣∣∣yyy) ∝∝∝

∣∣∣ΩΩΩξξξ⊗ IT
∣∣∣−0.5

exp

{
− 1

2

[(ΩΩΩ−0.5
ξξξ

O
IT
)
yyy−

(ΩΩΩ−0.5
ξξξ

O
XXX
)
b̂̂b̂b
]′

×
[(ΩΩΩ−0.5

ξξξ

O
IT
)
yyy−

(ΩΩΩ−0.5
ξξξ

O
XXX
)
b̂̂b̂b
]

+
(
bbb− b̂̂b̂b

)′ (ΩΩΩ−1
ξξξ

O
XXX′XXX

)(
bbb− b̂̂b̂b

)}
.
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Building Blocks for Bayesian Confidence Bands for IRFs, IV

▶ The reconstructed likelihood

H
(
bbb, ΩΩΩξξξ∣∣∣yyy) ∝∝∝

∣∣∣ΩΩΩξξξ⊗ IT
∣∣∣−0.5

exp

{
− 1

2

[(ΩΩΩ−0.5
ξξξ

O
IT
)
yyy−

(ΩΩΩ−0.5
ξξξ

O
XXX
)
b̂̂b̂b
]′

×
[(ΩΩΩ−0.5

ξξξ

O
IT
)
yyy−

(ΩΩΩ−0.5
ξξξ

O
XXX
)
b̂̂b̂b
]

− 1
2

(
bbb− b̂̂b̂b

)′ (ΩΩΩ−1
ξξξ

O
XXX′XXX

)(
bbb− b̂̂b̂b

)}

=
∣∣∣ΩΩΩξξξ∣∣∣−0.5m

exp

{
− 1

2

(
bbb− b̂̂b̂b

)′ (ΩΩΩ−1
ξξξ

O
XXX′XXX

)(
bbb− b̂̂b̂b

)}

×
∣∣∣ΩΩΩξξξ∣∣∣−0.5(T−m)

exp

{
− 1

2 tr
([(ΩΩΩ−0.5

ξξξ

O
IT
)
yyy−

(ΩΩΩ−0.5
ξξξ

O
XXX
)
b̂̂b̂b
]′

[(ΩΩΩ−0.5
ξξξ

O
IT
)
yyy−

(ΩΩΩ−0.5
ξξξ

O
XXX
)
b̂̂b̂b
])}

where m = np+ 1 =⇒ the number of coefficients per regression and nm are
the total number of coefficients in the VAR(p).
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Building Blocks for Bayesian Confidence Bands for IRFs, V

▶ The term
∣∣∣ΩΩΩξξξ∣∣∣−0.5m

exp
{
−0.5

(
bbb− b̂̂b̂b

)′ (ΩΩΩ−1
ξξξ

O
XXX′XXX

)(
bbb− b̂̂b̂b

)}
is the

distribution
of bbb conditional on b̂̂b̂b, ΩΩΩξξξ , yyy, and XXX, which is normal.

▶ The second term is the moment matrix of the residuals ξ̂̂ξ̂ξ
=⇒ the covariance matrix ΩΩΩξξξ × T .

▶ The Wishart distribution is produced by the moment matrix Z = zz′,
1. where the g × s matrix z ∼ N

(
0g×s , ΩΩΩz

)
=⇒ Z ∼ W

(ΩΩΩz, g
)
.

2. Z has the Wishart distribution with mean ΩΩΩz and g dfs.
3. =⇒ A sample covariance matrix drawn from a multivariate normal

distribution is distributed Wishart.
4. The inverse Wishart distribution is Z−1 ∼ W−1

(ΩΩΩ−1
z , g

)
.

5. =⇒ The conjugate prior of ΩΩΩξξξ is the inverse Wishart distribution.

6. =⇒ The conjugate prior of ΩΩΩ−1
ξξξ is the Wishart distribution.

▶ These facts decompose the VAR(p)’s likelihood into

H
(
bbb, ΩΩΩξξξ∣∣∣yyy) ∝∝∝ N

(
bbb
∣∣∣b̂̂b̂b, ΩΩΩξξξ , XXX, yyy

)
×W

(ΩΩΩ−1
ξξξ

∣∣∣yyy, XXX, b̂̂b̂b, T −m
)
.
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Building Blocks for Bayesian Confidence Bands for IRFs, VI

▶ The likelihood H
(
bbb, ΩΩΩξξξ∣∣∣yyy) of a VAR(p) is the product of the conditional

normality of bbb and since the covariance matrix of the n reduced-form VAR
errors, εt , are Gaussian, ΩΩΩ−1

ξξξ has the Wishart distribution with T −m dfs.

▶ Decomposition yields a posterior of bbb ∼ normal conditional on ΩΩΩξξξ and yyy.

1. Center posterior on OLS estimates, b̂̂b̂b, and its covariance matrix.
2. The posterior and the likelihood share distributional properties

=⇒ the prior × the likelihood is proportional to the posterior.
3. The prior is the joint distribution of bbb and ΩΩΩξξξ , which is proportional

to ΩΩΩ−1
ξξξ =⇒ Wishart because there is no information about these

parameters beyond that embedded in the VAR(p).

▶ Analytic decomposition of H
(
bbb, ΩΩΩξξξ∣∣∣yyy) =⇒ careful choices of priors for bbb

and ΩΩΩξξξ yield posterior distributions that are computed analytically.

▶ However, there are other priors that are consistent with analytic
computation of posterior distributions of VAR parameters.
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Bayesian Confidence Bands for IRFs

▶ Still, H
(
bbb, ΩΩΩξξξ∣∣∣yyy)∝∝∝N

(
bbb
∣∣∣b̂̂b̂b, ΩΩΩξξξ , XXX, yyy

)
×W

(ΩΩΩ−1
ξξξ

∣∣∣yyy, XXX, b̂̂b̂b, T −m)
)

suggests

a simple Monte Carlo algorithm for generating posterior distributions of
IRF(h

)
for just identified structural VARs.

▶ Given OLS estimates of a VAR(p)’s parameters, b̂̂b̂b, errors, Ξ̂̂Ξ̂Ξ = YYY − XXXB̂̂B̂B, and
error covariance matrix, Ω̂ΩΩ, the multi-step Monte Carlo algorithm of IRF
confidence bands consists of the following steps.

1. Draw the covariance matrix ΣΣΣk ∼ IW ((Ξ̂̂Ξ̂Ξ′Ξ̂̂Ξ̂Ξ)−1
, T −m

)
.

2. Generate bbbk = b̂̂b̂b + υυυk,mn, where υυυk,mn is the reshaped row vector

of ϑϑϑk ∼N
(

0mn,
[ΣΣΣk⊗(XXX′XXX)−1

])
.

3. Compute G0,k = ΩΩΩ0.5
k , where ΩΩΩk = (εk,tε′k,t)/T and εk,t = Yt − ΘΘΘ′kXt .

4. Calculate Gk,i,ℓ
(
h
)

using G0,k and bbbk (ignore intercepts), h = 0, 1, 2, . . . , H.

5. Repeat steps 1, . . . , 4 for k = 1, 2, . . . ,K iterations to report quantiles

of
{{

IRFk,i,ℓ
(
h
)}H
h=0

}K
k=1

, w/r/t Yi,t and the ℓth structural shock.
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Notes on Bayesian Confidence Bands for IRFs

▶ This Bayesian Monte Carlo algorithm yields an exact posterior distribution

of the likelihood, H
(
bbb, ΩΩΩξξξ∣∣∣yyy), conditional on the priors

1. the VAR errors εt ∼ Gaussian,
2. intercepts and lagged coefficients, bbb ∼ conditionally normal,
3. and the covariance matrix of bbb, ΩΩΩ−1

ξξξ ∼ Wishart.

▶ Asymptotic approximate and bootstrapped confidence bands can be
non-pivotal =⇒ these quantities depend on nuisance parameters,
which are the VAR(p)’s OLS estimates =⇒ small sample bias matters.

▶ Sampling the empirical distribution of the IRFs from H
(
bbb, ΩΩΩξξξ∣∣∣yyy)

1. relies on the OLS estimates for all the information available in the data
under the DGP of a VAR(p) =⇒ small sample bias in b̂̂b̂b is not an issue.

2. The algorithm is valid only for recursive identification schemes.

3. There remain issues with the empirical distribution of the IRFs.

Jim Nason
(
BVARs: Lecture 1

)
Empirical Methods: Introduction to VARs



Sims: Macroeconomics and Reality

Estimating Unrestricted VARs

Fundamentals and VARs

Impulse Response Functions

Forecast Error Variance Decompositions

Notes on Bayesian Confidence Bands for IRFs, cont.

▶ Often report percentiles because the algorithm samples from H
(
bbb, ΩΩΩξξξ∣∣∣yyy)

=⇒ standard error bands are biased estimates of the coverage intervals
of IRFs because a VAR’s likelihood is not symmetric.

▶ An issue with inference using the coverage interval around IRF(h
)

1. is akin to a t -ratio =⇒ only the statistical significance of IRF
(
h
)
.

2. Coverage intervals of IRFs are not joint tests of IRF
(
h
)
, . . . , IRF

(
h+ j

)
=⇒ not an F -, Lagrange multiplier, or Wald test.

▶ This is especially a problem because IRFs are often serially correlated
across horizons h = 0, 1, 2, . . . , H.
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Serial Correlation and Bayesian Confidence Bands for IRFs

▶ Coverage intervals are biased if changes in uncertainty of an IRF at horizon
h affects the uncertainty of nearby IRFs =⇒ serially correlated IRFs.

▶ The inference problem is that variation in IRF(h
)

is not independent
of IRF(h+ j

)
when there is serial correlation in IRFs.

▶ Sims and Zha (1999) assume that
{
Gh
}H
h=0

are multivariate normal

with covariance matrix ΩΩΩG.

▶ Measure uncertainty or variability around
{
Gh
}H
h=0

by projecting

on the largest principal components of ΩΩΩG.
1. Principal components (PCs) are orthogonalized measures of the variability

(i.e., variance) of a covariance stationary multivariate time series.

2. The largest PC of ΩΩΩG is the (unobserved) factor responsible for the largest
share of variance in this symmetric (and positive definite) matrix.

3. An eigenvalue decomposition is an estimator of PCs =⇒ the largest PC
is a function of the largest eigenvalue.

▶ Computing PCs by eigenvalue decomposition adds two steps to the Monte
Carlo algorithm for calculating IRF error bands.
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Computing Bayesian Confidence Bands for IRFs, I

▶ Denote the H+1 × H+1 covariance matrix of
{{

Gk,i,ℓ
(
h
)}K
k=1

}H
h=0

, ΩΩΩG,i,ℓ,

which has a Jordan normal form PPPGi,ℓ
ΛΛΛGi,ℓ

PPP′Gi,ℓ , where the eigenvalues of

ΩΩΩGi,ℓ live on the diagonal of ΛΛΛGi,ℓ and the matrix of eigenvectors obeys

PPPGi,ℓ
PPP′Gi,ℓ = IH+1×H+1 =⇒ eigenvectors have unit length.

1. λh,i,ℓ is the hth eigenvalue of ΩΩΩG,i,ℓ and is the
(
h, h

)
element of ΛΛΛGi,ℓ , where

the eigenvector tied to λh,i,ℓ is PPPGi,ℓ,·,h, =⇒ the hth column of PPPGi,ℓ .

2. Define Gi,ℓ
(
h
)
= K−1

∑K
k=1 Gki,ℓ

(
h
)
, h = 0, 1, 2, . . . , H, and Giℓ is the H+1

column vector of the Monte Carlo averages Gi,ℓ
(
h
)
.

3. =⇒ Add a step to calculate ΩΩΩGi,ℓ , ΛΛΛGi,ℓ , and PPPGi,ℓ and tabulate IRF error bands.
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Computing Bayesian Confidence Bands for IRFs, II

▶ Error bands of IRF
(
h
)
s could be computed as Gi,ℓ ± α

∑H
h=1 PPPGi,ℓ ,·,h

√
λh,i,ℓ,

where α denotes the significance level.

▶ However, there are often only a few λs that are “large” in absolute value.

1. Symmetric standard error bands are Gi,ℓ ±
∑sup
m=f PPPGi,ℓ,·,m

√
λm,i,ℓ and

Gi,ℓ ± 1.96
∑sup
m=f PPPGi,ℓ,·,m

√
λm,i,ℓ for 1-standard deviation (i.e., 68%) and

95% (i.e., 2-standard deviation) confidence intervals, where f and sup
denote the first non-negligible and largest eigenvalues (sup could = f )

of ΩΩΩGi,ℓ and the associated eigenvalue(s) =⇒ assume IRFs ∼ normal.

2. Asymmetric percentile bands are Gi,ℓ + γαi,ℓ and Gi,ℓ + γ1−α
i,ℓ , where

γsi,ℓ =
∑sup
m=f PPPGk,i,ℓ,m,·G

s
i,ℓ involves element by element multiplication

of the H+1 elements of the row vector PPPGi,ℓ,m,· and the column vector

Gsk,i,ℓ , α is the significance level, s = α, 1−α, PPPGi,ℓ,m,· is the mth row

of PPPGi,ℓ
, and Gsk,i,ℓ is the kth draw from the ensemble

{
Gk,i,ℓ

}K
k=1

of IRFs.
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Sup-t Confidence Bands

▶ An old statistics problem is conducting inference on a region of the parameter space.

▶ Suppose the hypothesis is a conditional moment (i.e. mean, median, etc.) that can
take on many potential values.

1. The test statistic is a confidence band of the conditional moment.

2. The confidence band gives lower and upper bounds in which reside more
than one potential realization of the moment, given a significance level.

3. See Working and Hotelling (1929, “Application of the theory of error to
the interpretation of trends,” Journal of the American Statistical Association
24(Supplement), 73–85).

▶ Olea and Plagborg-Møller (2019) develop methods to construct uncertainty bands for
IRFs in the tradition of Working and Hotelling (1929).

1. Calculate quantiles to construct uncertainty bands that use all the IRF forecast
horizons simultaneously.

2. Show a Sup-t confidence band is best with respect to asymptotic coverage.

3. The analytic result is supported by Monte Carlo results indicating the Bayesian
version of the Sup-t confidence band dominates (in small sample).

4. Differs from Sims and Zha (1998) =⇒ they rely only on the largest PCs to remove
the sources of serial correlation in uncertainty bands.
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Plug-in Sup-t Confidence Bands for IRFs

▶ Olea and Plagborg-Møller (2019) propose to construct Bayesian credible
intervals for IRFs with one of two algorithms.

▶ Algorithm 1 needs the mean, Giℓ, (or median) and the covariance matrix,ΩΩΩGi,ℓ , of the posterior distribution of the IRFs.

1. Pull the standard deviations of the IRFs from ΩΩΩGi,ℓ .

2. Eliminate standard deviations ≈ 0 (i.e.,
√
machine error).

3. Adjust the IRF horizon for the deleted standard deviations, Hadj , to construct

the correlation matrix, ΩΩΩCorrGi,ℓ
, of ΩΩΩGi,ℓ using its eigenvalues.

4. Draw K samples of t-stats ∼ N
(

0Hadj×1, ΩΩΩCorrGi,ℓ

)
.

5. The Sup-t credible intervals are the 1 − α percent quantiles of the K samples

of the t-stats =⇒ Giℓ ± q1−α

√
Diag

(ΩΩΩGi,ℓ

)
.
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Sup-t Bayesian Credible Intervals for IRFs

▶ Algorithm 2 produces a “quantile-based bootstrap or Bayes band” =⇒ for
a confidence level, 1 − α, calculate pointwise Bayesian credible intervals.

1. Multiple ‘equal tailed’ credible intervals across all horizons =⇒ estimated
credible intervals, Ĉ , are the Cartesian product Ĉ0 × Ĉ1 × Ĉ2 × . . .× ĈH .

2. Choose probabilities in the tails of the posterior of the IRFs to construct
intervals with credibility of 1 − α percent simultaneously for all h.

▶ Only need the posterior distribution of the IRFs,
{{

Gk,i,ℓ
(
h
)}K
k=1

}H
h=0

, to

compute αx that achieves simultaneous credibility of 1 − α percent.

1. Solve a nonlinear equation for αx to find the fraction of K draws inside the
credibility interval

[
0.5α,1− 0.5α

]
for h = 0, . . . , H =⇒ quantiles.

2. Credible intervals ∈
[
0.5αx%,

(
1− 0.5αx

)
%
]

quantiles of
{
Gk,i,ℓ

(
h
)}K
k=1

.

▶ Olea and Plagborg-Møller show the plug-in Sup-t uncertainty bands and
Sup-t Bayesian credible intervals are asymptotically equivalent.

▶ MatLab™ code for algorithms 1 and 2 are provided by Olea and
Plagborg-Møller at https://github.com/jm4474/Confidence_Bands.
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Measuring the Variability of Identified Shocks

▶ The forecast error variance decomposition (FEVD) measures the importance of an
element of εt to forecast or explain the magnitude of fluctuations in Yi,t+h.

▶ This suggests that FEVDs reveals information about the impact of a change in εℓ,t
on the variability of fluctuations in Yi,t+h.

▶ A different piece of information about Yi,t+h than found in IRFs.

▶ The IRF is only about the shape of the response of Yi,t+h to a one unit change in εℓ,t .

▶ The FEVD explains the importance of changes in εℓ,t for future movements in Yi,t+h.

▶ For FEVDs, the objects of interest revolve around the variance and MSEs.

▶ Nonetheless, IRFs and FEVDs employ the same information =⇒ the VAR(p)’s slope
coefficients, errors, and covariance matrix of the errors.
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Computing FEVDs, I
▶ When Yt ∼ Wold Decomposition, the forecast error at date t+h is

Yt+h − Et
{
Yt+h

}
=

h−1∑
j=0

Cjεt+h−j .

▶ At forecast horizon h, its MSE is

MSEY
(
h
)
≡ E

{[
Yt+h − Et

{
Yt+h

}][
Yt+h − Et

{
Yt+h

}]′} = h−1∑
j=0

CjΩΩΩξξξC′j .

▶ Switching to the VAR(1) companion form of a VAR(p) gives the forecast
error at date t+h as

Zt+h − Et
{
Zt+h

}
=

h−1∑
j=0

FjVt+h−j .

▶ The MSE of this forecast error is

MSEZ
(
h
)
≡ E

{[
Zt+h − Et

{
Zt+h

}][
Zt+h − Et

{
Zt+h

}]′} = h−1∑
j=0

FjQFj ′.
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Computing FEVDs, II

▶ Suppose the questions of interest concerns the h-step ahead FEVD
of the ith element of Yt w/r/t to the ℓth shock of εt .

▶ The question asks about the contribution of a one unit change in εℓ,t
to the variability of Yi,t+h.

1. =⇒ The MSE has to be normalized by the total MSE of Yi,t+h.

2. The FEVDℓ, i
(
h
)

measures the fraction or percentage
of the variability of Yi,t+h accounted for by εℓ,t .

▶ The FEVDY, ℓ, i
(
h
)
=

MSEY, ℓ, i
(
h
)

MSEY
(
h
) or FEVDZ, ℓ, i

(
h
)
= MSEZ, ℓ, i

(
h
)

MSEZ
(
h
) .

▶ Thus, a FEVD measures the relative contribution of εℓ,t to fluctuations in
Yi,t+h using information in IRFs =⇒ the coefficient matrices of a VMA(∞)
or the lag coefficient matrix of the associated companion VAR(1).

Jim Nason
(
BVARs: Lecture 1

)
Empirical Methods: Introduction to VARs



Sims: Macroeconomics and Reality

Estimating Unrestricted VARs

Fundamentals and VARs

Impulse Response Functions

Forecast Error Variance Decompositions

Identified FEVDs

▶ FEVDs face the same identification issues as IRFs =⇒ built on same VMA(∞).

▶ Define ηt = D−1εt =⇒ Yt+h − Et
{
Yt+h

}
=
∑h−1
j=0 Gjηt+h−j , where Gj = CjD.

▶ The total h step-ahead MSE of the shocks identified by the recursive

ordering is MSEY,G
(
h
)
=
∑h−1
j=0 GjG

′
j .

▶ As shown in the previous slide, FEVDs are computed as the percentage
contribution of εt to fluctuations in Yt+h.

▶ The relative contribution of a change in εℓ,t to the variability of fluctuations
in Yi,t+h is measured by the

(
i, ℓ

)
element of the FEVDs at horizon h

FEVDY,G, i, ℓ
(
h
)
=

MSEY,G, i,ℓ
(
h
)

MSEY,G
(
h
) .
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Notes on FEVDs

▶ The δ-method, bootstrap, and Bayesian Monte Carlo procedures can be
adapted to generate confidence bands for FEVDs =⇒ Bjs, εt , and Ω.

▶ Confidence bands are not joint tests of the significance of several FEVDs in
the same way the joint significance of IRFs cannot be assessed with
confidence bands.

▶ FEVDs can suffer from serial correlation across horizons h = 0, 1, 2, . . . , H.
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