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Introduction

▶ BVARs were first developed to solve a forecasting problem.

▶ The problem is an unrestricted VAR aims to describe the auto- and
cross-covariance functions, which define the dynamics of Yt .

▶ This goal is often achieved by “mining” the data.

1. The process only stops when, for example, the marginal significance
of adding more lags to the VAR is small.

2. =⇒ There is no more of the dynamics of Yt to be explained.
3. Over-fitting (i.e., maximizing R2) provides a good reduced form

depiction of the data, but is neither necessary nor sufficient
attributes of a good forecasting model.

▶ Methods that eliminate or “shrink” the number of VAR parameters to be
estimated are often found to have improved forecasting performance.

▶ Those interested in using BVARs for forecasting should see Karlsson, S.
(2013, “Forecasting with Bayesian vector autoregressions,” in Elliott, G.,
and A. Timmermann (eds.) Handbook of Economic Forecasting,
vol. 2 (part B), pp. 791–897, New York, NY: Elsevier).
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Introduction

▶ The Minnesota prior was developed in the late 1970s and early 1980s by
researchers at the FRB-Minneapolis to improve forecasting with VARs.

▶ At that time, the unit root or I
(
1
)

revolution was sweeping across macro.

1. Many aggregate time series were perceived to be random walks.
2. See Nelson and Plosser (1982, “Trends and random walks in

macroeconomic time series: Some evidence and implications,”
Journal of Monetary Economics 10, 139–162).

▶ The Minnesota prior (MP) is the belief that macro and financial variables
are dominated by own I

(
1
)

dynamics.

1. This restricts the diagonal elements of B1 to one,
2. the off diagonal elements of B1, the elements of c, and all of the

elements of Bj , j = 2, . . . , p, to zero of an unrestricted VARs.

▶ These restrictions shrink the dimension of the parameter vector that
needs to be estimated =⇒ a more efficient estimator.
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Unit Root Beliefs

▶ The MP is grounded on the belief the elements of Bj , j = 1, . . . , p, (and c)

are distributed normal and ΩΩΩ−1 is fixed or known.

1. Let Bj
(
or b

)
denote the priors of Bj

(
b
)
.

2. MP: E
{
Bii,1

}
= Bii,1 = 1, i = 1, . . . , n, E

{
Biℓ,1

}
= Biℓ,1 = 0, i ≠ ℓ,

E
{
Bj,1

}
= Bj = 0n×n, j = 2, . . . , p, E

{
c
}
= c = 0n×1, andΩΩΩB is diagonal.

3. =⇒ Yt consists of n independent (driftless) random walks.
4. Under the MP, the BVAR is estimated on levels data because Yt ∼ I

(
1
)
.

▶ MP: ΩΩΩB depends on three hyperparameters (i.e., parameters of a prior).

1. σii,1 = λ0, σiℓ,j =
λ0λ1

jλ3

σℓ
σi

, λ1 ≤ 1, and σi,j = λ0λ2.

2. λ0 = tightness (i.e., precision) of the variances of own first lags.
3. λ1 = tightness of the variances of other variables relative to λ0.
4. λ2 = tightness of variances of “exogenous” variables (i.e., intercepts).
5. λ3 = tightness of the variances of lags j = 2, . . . , p.
6. Priors on the standard deviations of the VAR coefficients.

▶ The MP priors are not the posterior of the BVAR =⇒ the posterior gives the
BVAR more complicated dynamics than a multivariate random walk.
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Intuition for the Minnesota Prior

▶ Assume a diagonal ΩΩΩB =⇒ VAR coefficients are independent.

▶ The decay rate of own and other variable lags is set by the prior on λ3
=⇒ as j ↑, rate of decay is faster.

1. Low order lags matter more for explaining dynamics of Yt .
2. =⇒ Coefficients on higher order lags are shrunk to zero.

▶ The prior on λ0 affects the variances of all VAR coefficients =⇒ reflects
information in the sample and researcher’s priors.

▶ Whether intercepts matter (relative to own first lag) relies on the prior λ2.

▶ The impact of lags of other variables is controlled by λ1 ≤ 1 =⇒ prior is
other variables have little role, but λ1 = 1 is equivalent to OLS.

▶ The MP treats ΩΩΩ as if its precision is perfect =⇒ there is no uncertainty
about variation in regression errors.

Jim Nason
(
BVARs: Lecture 2

)
Empirical Methods: BVARs, Priors, and Identification



Priors for Unrestricted Bayesian VARs

Structural BVARs, Priors, and Identification

Critiques of SVARs

The Minnesota Prior

Conjugate and Non-Informative Priors

Pros and Cons of the Minnesota Prior

▶ Suppose a VAR estimated on quarterly data has n = 6, p = 8, and intercepts
=⇒ 49 coefficients to be estimated per regression =⇒ 294 coefficients to be
estimated, that suggests the need for nearly 80 years of quarterly data for
any confidence OLS estimates mimic asymptotic properties.

▶ The MP solves this problem by shrinking the dimension of the VAR
coefficient vector =⇒ more efficient or precise coefficient estimates.

1. Shrinkage restricts VAR coefficients using sample information
2. =⇒ standard deviations of regression errors σi, i = 1, . . . , n),
3. and researcher’s beliefs about multivariate unit roots in Yt .

▶ The issue is the researcher’s beliefs about λMP =
[
λ0 λ1 λ2 λ3

]
.

1. A “loose” prior =⇒ OLS or noninformative prior suggests a large
number of VAR coefficients to estimate and these over-fit the data.

2. A “tight” prior can produce a posterior that too closely resembles
the MP, which ignores information in the data.
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How to Set λMP

▶ There are several ways to set λMP .

▶ A benchmark prior sets λMP,T =
[
0.2 0.5 1 105

]
, which is tighter

compared with λMP,L =
[
0.2 0.5 2 105

]
.

1. λ2 = 2 =⇒ a looser prior on the slope coefficients and a
non-informative prior on the intercepts.

2. λ3 = 105 yields a (damped) harmonic decay rate (i.e., decays
smoothly to zero) on higher order lags in the BVAR.

3. BVARs are estimated equation by equation under these MPs.

▶ Or estimate λMP as part of the BVAR on the data =⇒ as if λMP
becomes part of the moment matrix of the data =⇒ employ
a system MLE and a “training sample.”

▶ This “empirical Bayes” approach to the MP is similar to givingΩΩΩ ∼ IW , which also involves a system estimator.
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Extensions to the MP

▶ Suppose one or more (but < n) elements of Yt are stationary
=⇒ E

{
Bkk,1

}
= Bkk,1 ∈ (−1, 1), for some k ∈

[
1,2, . . . , n

]
.

▶ Another way to express the unit root assumption is with a prior that
restricts the sums of own lags to one,

∑p
j=1 Bii,j = 1, i = 1, . . . , n.

1. Similarly, the prior of zero on the off-diagonal elements can be
conveyed as

∑p
j=1 Biℓ,j = 0, i ≠ ℓ.

2. =⇒ an implication of these two priors is the average of the recent
observations of the ith variable is the forecast; see Doan, Litterman,
and Sims (1984), “Forecasting and conditional projection using
realistic prior distributions,” Econometric Reviews 3, 1–144.

▶ Seasonality in the data can also be dealt with as a prior.

1. The prior can be deterministic =⇒ seasonality occurs the same time
each year, say, in the fourth quarter.

2. Or there is randomness in the seasonal variation during the year.
3. This randomness can be interpreted as additional observations

on which to estimate the BVAR =⇒ fake or “dummy” observations
that reflect the researcher’s belief about seasonality.
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Priors and Dummy Observations, I

▶ Dummy observations represent “uncertain prior knowledge about the
model’s parameters;” see Sims, C.A. (“Dummy observation priors revisited,”
manuscript, Department of Economics, Princeton University).

▶ The idea is to add observations to the data that contain information about
the prior of interest =⇒ the dummy observations induce or impose the prior
on the model.

▶ Prior information is placed in a square matrix RRR conformable with BBB.

1. The dummy observations are generated with RRRBBB = BBBR + υυυB, where
2. BBBR contains the prior restrictions and
3. the tightness restrictions on the prior is embedded in υυυB ∼ N

(
0, ΩΩΩR).

▶ The unconditional distribution of BBB becomes BBB ∼ N
(
RRR−1BBBR , RRR−1ΩΩΩRRRR−1′).

1. The estimator B̃BB =
[
RRR−1ΩΩΩRRRR−1′+ΩΩΩ−1⊗XXX′XXX

]−1[
RRR−1BBBR+

(ΩΩΩ−1⊗XXX′
)
YYY
]
.

2. Any sort of restrictions can be imposed on BBB in this way =⇒ from zero
restrictions to sum of coefficients, but there are only linear restrictions.

3. Also, note that as T -→ ∞ the dummy observations receive less weight
in the estimator of B̃BB -→ B̂BB =⇒ OLS.
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Priors and Dummy Observations, II

▶ The previous example gives BBB a normal prior under which BBBR and ΩΩΩR are
known =⇒ these assumptions matter for several reasons.

▶ Suppose RRR = I =⇒ BBB = BBBR + υυυB =⇒ formally the prior is

1. g
(
BBB
)
∝
∣∣ΩΩΩR∣∣−0.5 exp

{
−0.5

(
BBB−BBBR

)′ΩΩΩ−1
R
(
BBB−BBBR

)}
=
∣∣ΩΩΩR∣∣−0.5 exp

{
−0.5ΩΩΩ−0.5

R
(
BBB−BBBR

)′ΩΩΩ−0.5
R

(
BBB−BBBR

)}
.

2. =⇒ The posterior is g
(
BBB
∣∣YYY) ∝ g

(
BBB
)L(BBB, ΩΩΩ∣∣∣YYY) = g

(
BBB
)

× exp
{[(ΩΩΩ−0.5

R
⊗

I
)
YYY−

(ΩΩΩ−0.5
R

⊗
XXX
)
BBB
]′[(ΩΩΩ−0.5

R
⊗

I
)
YYY−

(ΩΩΩ−0.5
R

⊗
X
)
BBB
]}

= exp
{
−0.5

(
zzz −ZZZBBB

)′(zzz −ZZZBBB
)}
= exp

{
−0.5

(
BBB− B̃BB

)′ZZZ′ZZZ(BBB− B̃BB
)

+ exp
{
−0.5

(
zzz −ZZZB̃BB

)′(zzz −ZZZB̃BB
)}

, where zzz =
[ΩΩΩ−0.5

R BBBR
(ΩΩΩ−0.5

R
⊗

I
)
YYY
]′,

ZZZ =
[ΩΩΩ−0.5

R
(ΩΩΩ−0.5

R
⊗

XXX
)]′, and BBBR =

(
ZZZ′ZZZ

)−1ZZZ′zzz.

3. The last term of the posterior, exp
{
−0.5

(
zzz −ZZZB̃BB

)′(zzz −ZZZB̃BB
)}

, is known
because of the assumptions on BBBR and ΩΩΩR =⇒ the posterior becomes

g
(
BBB
∣∣YYY)∝ exp

{
−0.5

(
BBB−B̃BB

)′ZZZ′ZZZ(BBB−B̃BB
)}
= exp

{
−0.5

(
BBB−B̃BB

)′Ω̃ΩΩ−1
R
(
BBB−B̃BB

)}
,

where Ω̃ΩΩR = [ΩΩΩ−1
R +

(ΩΩΩ−1⊗XXX′XXX
)]−1 =⇒ g

(
BBB
∣∣YYY) ∼ N (

B̃BB, Ω̃ΩΩR).
4. B̃BB is a function of B̂BB when ΩΩΩ = Ω̂ΩΩ =⇒ OLS.
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Priors and Dummy Observations, III

▶ Remember a VAR(p) can be written as a static regression YYY = XXXBBB + ΞΞΞ, whereΞΞΞ ∼ N (
0, ΩΩΩ) =⇒ GLS estimator of BBB is

(
XXX′ΩΩΩ−1XXX

)−1XXX′ΩΩΩ−1YYY, which is also B̃BB.

▶ This is the Theil-Goldberger mixed estimator developed in Theil and
Goldberger (1961, “On pure and mixed statistical estimation in economics,”
International Economic Review 2, 65–78).

▶ This suggests treating priors as fake or “dummy” observations.

▶ Consider the prior BBB = BBBR + υυυB, which appends the dummy observations

1. YYY0 = ΩΩΩΩΩΩ−0.5
R BBB, XXX0 = ΩΩΩΩΩΩ−0.5

R , and ΞΞΞ0 = ΩΩΩΩΩΩ−0.5
R υυυB

2. to the static regression to install the prior in the data.

▶ An example is the MP =⇒ BBBiℓ,j,r = 0 except for i = ℓ, j = 1, and ΩΩΩR =ΩΩΩR(λMP ).
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Introduction

▶ The MP is a forecasting tool rather than a prior on coefficients that
help identify a structural VAR.

▶ SVARs are useful for studying business cycle and monetary theories
using the responses of macro and financial variables to identified
shocks (i.e., IRFs and FEVDs) =⇒ draw from the SVAR’s posterior.

▶ The task is to construct a posterior simulator that respects the
restrictions identifying a SVAR.

▶ As we have already seen, Gaussian VARs have

1. a natural conjugate prior and its cousin the non-informative prior,
2. which yield posteriors for just-identified recursive identifications
3. from which confidence bands of IRFs and FEVDS are

straightforward to compute.
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The Conjugate Prior of a Gaussian VAR

▶ A review of Gaussian VARs begins with the model explaining the dynamics
of the n-dimensional time series Yt

Yt = c +
p∑
j=1

BjYt−j + εt , εt ∼N
(
0n×1, ΩΩΩn×n).

▶ Since the likelihood of a Gaussian VAR can be decomposed into the
conditional distribution of the VAR coefficients and the moment
matrix of the VAR residuals, we know

H
(
bbb, ΩΩΩξξξ∣∣∣yyy)∝∝∝N

(
bbb
∣∣∣b̂̂b̂b, ΩΩΩξξξ , XXX, yyy

)
×W

(ΩΩΩ−1
ξξξ

∣∣∣yyy, XXX, b̂̂b̂b, T −np − 1
)
.

▶ The implications are

1. the VAR intercept and slope coefficients are normal conditional
on the OLS VAR estimates and the data and

2. the precision of the covariance matrix of the VAR residuals is
distributed Wishart conditional on its degrees of freedom.

Jim Nason
(
BVARs: Lecture 2

)
Empirical Methods: BVARs, Priors, and Identification



Priors for Unrestricted Bayesian VARs

Structural BVARs, Priors, and Identification

Critiques of SVARs

The Minnesota Prior

Conjugate and Non-Informative Priors

The Gaussian Conjugate Prior and Posterior Estimator of a BVAR

▶ The decomposition of a Gaussian VAR’s likelihood suggests

1. the priors BBB
∣∣∣ΩΩΩ ∼ N (

BBB, ΩΩΩ⊗ZZZ
)

and ΩΩΩ−1 ∼ W
(
SSS−1, ννν

)
, which

2. gives the posterior BBB
∣∣∣ΩΩΩ, YYY ∼ N

(
BBB, ΩΩΩ⊗ZZZ

)
and ΩΩΩ−1

∣∣∣YYY ∼ W(
SSS
−1, ννν

)
,

3. where ZZZ =
[
ZZZ−1 + XXX′XXX

]−1, BBB = ZZZ
[
ZZZ−1BBB + XXX′XXXB̂BB

]
, ννν = T + ννν ,

4. and SSS = Ω̂ΩΩ + SSS + B̂BB
′
XXX′XXXB̂BB + BBB′ZZZ−1BBB − BBB

′[
ZZZ−1 + XXX′XXX

]
BBB.

▶ The researcher sets the priors for the hyperparameters BBB, SSS, ZZZ, and ννν .

▶ There are (almost) no constrains on a researcher when choosing these
hyperparameters to any values (i.e., your priors are your priors).

▶ The Gaussian conjugate prior is more restrictive compared with the MP.

1. The lag length is the same for every regression and every regression
includes the same regressors =⇒ only just-identified recursive
orderings are consistent with the Gaussian conjugate prior.

2. The prior standard errors of the VAR coefficients are proportional,ΩΩΩ⊗ZZZ =⇒ the MP loosens this restriction making the choice an
explicit part of the researcher’s prior.
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The Non-Informative Prior

▶ Suppose a researcher’s priors are SSS = ZZZ = c In×n, and ννν = c, which
can take any values.

▶ However, as c -→ 0, the posterior consists of BBB = B̂BB and SSS = Ω̂ΩΩ.

▶ Since the hyperparameters play no role in the estimators of BBB and SSS,
the prior is “non-informative” =⇒ the non-informative prior yields
a posterior that is the OLS estimator of a Gaussian VAR.

▶ The non-informative prior is easy to construct, but the efficiency gains
tied to shrinkage are lost.
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Several More Thoughts on Priors for BVARs

▶ Priors are beliefs about models that reflect a researcher’s subjective
judgment about the uncertainty surrounding the models.

1. The uncertainty is subjective because the researcher selects
the probability distribution that gives this judgment content.

2. “Classical” Bayesians set priors before looking at the data.
3. However, there are Bayesian methods that “peek” at the data

first =⇒ empirical Bayesian priors.
4. The important point is that priors belong to the researcher

=⇒ your priors are your priors.
5. Message: A researcher should not accept priors for a model used

by other analysts without asking do these reflect her beliefs.

▶ Some priors are incompatible with the way in which Yt is constructed.

1. Ex: The MP is built on the belief that Yt is a multivariate random walk.
2. =⇒ Estimate BVARs on macro and financial data in levels.
3. This part of the MP is often employed to estimate structural BVARs.

▶ Do not confuse the restrictions that render a BVAR a structural macro
model with the priors expressing a researcher’s uncertainty about random
variables =⇒ these variables are the coefficients of the structural BVAR.
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Introduction

▶ As discussed previously, SVARs impose restrictions on the responses
of Yt to identified shocks.

▶ Shocks are identified in SVARs using short-run or long-run restrictions.

▶ A Cholesky decomposition of the covariance matrix of a BVAR’s residuals
1. is an example of a short-run identification scheme,
2. which is just-identified and recursive.

▶ Short-run identifications are located in the impact or lag zero responses
of Yt to ηt

(
= D−1εt

)
.

1. Several short-run schemes have been developed, which require different
estimators and interpretations.

2. These are often zero restrictions that denote predetermined variables
(i.e. weakly exogenous), variables excluded from “structural” relationships
(i.e. a production function or Phillips curve), or variables responding
“slugglishly” w/r/t the identified shocks.

▶ Long-run restrictions are about the response of EtYt+j to ηt , as j -→ ∞
=⇒ zero restrictions indicating long-run neutrality =⇒ labor market variables
w/r/t a TFP shock or real variables w/r/t a nominal shock.
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A Typology of Short-Run VAR Restrictions, I

▶ Return to the unrestricted Gaussian VAR

Yt = c +
p∑
j=1

BjYt−j + εt , εt ∼N
(
0n×1, ΩΩΩn×n).

▶ A SVAR is constructed using DD′ = ΩΩΩ =⇒ the structural shocks ηt = D−1εt .
1. Set A0 ≡ D−1, a = D−1c, and Aj = D−1Bj =⇒ the SVAR

A0Yt = a +
p∑
j=1

AjYt−j + ηt , ηt ∼N
(
0n×1, In×n

)
.

2. This SVAR is motivated by a recursive ordering =⇒ A0 is lower triangular,
which obeys the recursive just-identified scheme of ΩΩΩ0.5.

3. Since A0ΩΩΩA′0 = In, A0 has 0.5
(
n2 −n

)
free parameters =⇒ given ΩΩΩ,

A0 has 0.5
(
n2 + n

)
nonlinear restrictions pinned down by the equality.

4. This identification is only one of many possible set of restrictions
that can be imposed on A0 =⇒ non-recursive schemes that are just-
or over-identified (as long as A0 is non-singular).

5. Amisano & Giannini (1997) label this SVAR the K-model, where K = A0.
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A Typology of Short-Run VAR Restrictions, II

▶ The K-model has an explicit simultaneous equations interpretation
=⇒ restrict the interactions of the elements of Yt at impact (i.e., lag zero).

▶ Instead, as shown previously, restrictions can be placed on the linear
combinations of the elements εt that produce the elements of ηt .

▶ The unrestricted Gaussian VAR lends itself to identifying the Amisano and
Giannini (1997) C-model by setting εt = Dηt , where C = D =⇒ the SVAR is

Yt = c +
p∑
j=1

BjYt−j + Dηt , ηt ∼N
(
0n×1, In

)
.

▶ Since εt = Dηt =⇒ ΩΩΩ = DD′, there are 0.5
(
n2 − n

)
free parameters in D.

▶ The C-model employs these free parameters to create linear combinations
of orthogonalized shocks, ηt , that produce just-identified recursive and
non-recursive schemes and over-identified non-recursive schemes.
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A Typology of Short-Run VAR Restrictions, III

▶ Amisano & Giannini (1997) combine the K-model and the C-model to
produce the AB-model =⇒ the SVAR is

A0Yt = a +
p∑
j=1

AjYt−j + Qηt , ηt ∼N
(
0n×1, In

)
,

where A = A0 and B = Q =⇒ A0εt = Qηt =⇒ A0ΩΩΩA′0 = QQ ′.

▶ The AB-model generalizes or nests the K- and C-models.

1. =⇒ A0 contains simultaneous equation restrictions.
2. Restrictions on linear combinations of orthogonalized

shocks are located in Q .
3. The nesting involves A0 = In =⇒ the C-model and the

K-model is obtained by making Q diagonal.

▶ Thus, A0ΩΩΩA′0 = QQ ′ =⇒ 2n2 − 0.5n
(
n+ 1

)
free parameters in A0 and Q .
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A Typology of Short-Run VAR Restrictions, IV

▶ There are mappings that move between the K-, C-, and AB-models.

▶ These mapping are nonlinear.

1. The K-model and the AB-model are equivalent if Q is diagonal.
2. When A0 = In, the C-model and the AB-model are equivalent.

▶ Suggests examining the nonlinearities inherent in the likelihood of the AB-model

L
(
Y1:T

∣∣∣A0, Q , BBB
)
= −0.5T

[
n ln

(
2π
)
+ ln

∣∣∣A−1
0 QQQ

(
A−1

0

)′∣∣∣]

− 0.5
T∑
t=1

[
Yt − BBBXt

]′[
A−1

0 QQQ
(
A−1

0

)′]−1[
Yt − BBBXt

]
,

where AAA =
[
a A1 . . . Ap

]
, QQQ = QQ ′, and BBB = A−1

0

[
a A1 . . . Ap

]
.
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A Typology of Short-Run VAR Restrictions, V
▶ Maximize the likelihood of the AB-model w/r/t to BBB =⇒ substitute for the OLS

estimates of these reduced form intercepts and slope coefficients to find

L
(
Y1:T

∣∣∣A0, Q , B̂BB
)
= −1

2
T

n ln
(
2π
)
+ ln

∣∣∣A−1
0 QQQ

(
A−1

0

)′∣∣∣ + 1
T

T∑
t=1

ε̂′t
[
A−1

0 QQQ
(
A−1

0

)′]−1
ε̂t

 .

▶ Since
∑T
t=1 ε̂

′
t

[
A−1

0 QQQ
(
A−1

0

)′]−1
ε̂t =

∑T
t=1 trace

([
A−1

0 QQQ
(
A−1

0

)′]−1
ε̂t ε̂′t

)
= T trace

([
A−1

0 QQQ
(
A−1

0

)′]−1Ω̂ΩΩ) = T trace
([

A0QQQ−1
(
A0

)′]Ω̂ΩΩ).

▶ Also, note ln
∣∣∣A−1

0 QQQ
(
A−1

0

)′∣∣∣ = ln
∣∣∣A−1

0

∣∣∣∣∣∣QQQ∣∣∣∣∣∣A−1
0

∣∣∣ = − ln
∣∣∣A0

∣∣∣2
+ ln

∣∣∣QQQ∣∣∣, which gives

L
(
Y1:T

∣∣∣A0, Q , B̂BB
)
= −T

2

[
n ln

(
2π
)
− ln

∣∣∣A0

∣∣∣2
+ ln

∣∣∣QQQ∣∣∣ + trace
([

A0QQQ−1
(
A0

)′]Ω̂ΩΩ)] .
▶ Nonlinear restrictions are difficult to implement, but Amisano and Giannini develop a

general class of affine restrictions that are easy to apply to the K-, C-, and AB-models.
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A Typology of Short-Run VAR Restrictions, VI
▶ Amisano and Giannini propose linear restrictions on D, A0, and A0 and Q

within the C-, K-, and AB-models, respectively.

▶ Linear restrictions are embedded in the matrices RD, RA0 , and RQ , where

1. RD vec
(
D
)
= rD for the C-model,

2. RA0 vec
(
A0
)
= rA0 for the K-model, and

3. RQ vec
(
Q
)
= rQ and RA0 vec

(
A0
)
= rA0 for the AB-model.

4. Restrictions are in “implicit” form, where RD, RA0 , and RQ

have n2 columns and full row rank.

▶ Another class of linear restrictions is
1. vec

(
D
)
= SDd + sD for the C-model, where d is a column vector

of the structural parameters in D,

2. vec
(
A0
)
= SA0 a0 + sA0 for the K-model, where a0 is a column

vector of the structural parameters in A0 and

3. vec
(
Q
)
= SQ q + sQ and vec

(
A0
)
= SA0 a0 + sA0 for the AB-model,

where q is a column vector of the structural parameters in Q .

4. Restrictions have “explicit” form, where SD, SA0 , and SQ have n2 rows,

full column rank, and column dimension ≤ 0.5
(
n2 −n

)
=⇒ maximum

number of free parameters in D, A0, or A0 and Q .

▶ Other restrictions are RDSD = 0, RA0 SA0 = 0, RQ SQ = 0, RDsD = rD,
RA0 sA0 = rA0 and RQ sQ = rQ .
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A Typology of Short-Run VAR Restrictions, VII: An Example

▶ The example is the SVAR estimated by Galí (1992, “How well does the IS-LM
model fit the post-war data,” Quarterly Journal of Economics 107, 709–738).

▶ The IS-LM model consists of

1. IS schedule =⇒ yt = yt−1 − σ
(
rt −πt

)
+ υs,t + υd,t ,

2. LM schedule =⇒ ∆mt − ∆πt = φ∆yt − λ∆rt + υmd,t ,
3. Money Supply =⇒ ∆mt = υms,t ,
4. Phillips curve =⇒ πt = πt−1 + β∆yt − γυs,t ,
5. where yt , rt , πt , mt , υs,t , υd,t , υmd,t , υms,t , and ∆ are output,

the nominal rate, inflation, the money stock, a supply shock,
and a demand shock, a money demand shock, a money supply
shock, and the first difference operator.

▶ Let Yt =
[∆yt ∆rt ∆mt ∆πt]′, ηt = [υd,t υmd,t υms,t υs,t]′, and

εt =
[
εy,t εr ,t εm,t επ,t

]′ =⇒ the AB-model

A0Yt = a +
p∑
j=1

AjYt−j + Qηt , A0εt = Qηt .
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A Typology of Short-Run VAR Restrictions, VII

▶ The IS-LM model restricts the AB-model by

A0 =


A0,11 A0,12 0 A0,14
A0,21 A0,22 A0,23 A0,24

0 0 A0,33 0
A0,41 0 0 A0,44

 =


1 σ 0 −σ
φ −λ −1 1
0 0 1 0

−β 0 0 1



and Q =


Q11 0 0 Q14

0 Q22 0 0
0 0 Q33 0
0 0 0 Q44

 =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 −γ

 .

▶ The impact matrices A0 and Q impose 6 and 11 short-run restrictions on the
AB-model (total = 17), but there are 22

(
= 2n2 − 0.5n

(
n+ 1

)
, n = 4

)
free

parameters =⇒ the SVAR is over-identified.
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A Typology of Short-Run VAR Restrictions, VII

▶ Next, apply the vec
(
·
)

operator to A0 and Q , define

SQ =



03×1 03×1

1 0

011×1 011×1

0 1


, SA0 =



0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
−1 0 0 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 0

04×5
0 0 0 0 1

03×5



,

q =
[
1 −

(
γ + 1

)]′, a0 =
[
σ φ −

(
λ+ 1) 1 − β

]′, sQ = vec
(
In
)
,

and sA0 = vec
(
In
)
.

▶ Use these matrices to form the linear restrictions vec
(
Q
)
= SQ q + sQ

and vec
(
A0
)
= SA0a0 + sA0 =⇒ restrictions are useful when constructing

the likelihood of the SVAR.
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The Sims and Zha (1998) SVAR Prior and Estimator: Introduction

▶ Sims and Zha (1998) were not the first to estimate SVARs with non-recursive
identifications.

1. See Gordon and Leeper (1994) and Cushman and Zha (1997).
2. Gordon and Leeper (1994) incorporate equilibrium money market outcomes

into a monetary policy VAR.
3. Cushman and Zha (1997) add an equation determining the equilibrium

exchange rate to a money supply-demand system to estimate the impact
of monetary policy shocks on a small open economy.

▶ Gordon and Leeper (1994) and Cushman and Zha (1997) impose non-recursive
identification schemes on their BVARs, but employ the normal-Wishart
estimation-similation technology developed for unrestricted (or recursively
identified) BVARs.

1. Consider the K-model =⇒ draw b and ΩΩΩ−1, impose the non-recursive
identification on A0, and draw these structural BVAR parameters.

2. =⇒ At the kth draw ΩΩΩ−1
k = A−1

0,kD−1A−1′
0,k yields Gj,k = A−1

0,kBBBj,k.

▶ Sims and Zha (1998) innovate on this “naive” Bayesian approach to non-recursive
identifications of structural BVARs with priors for and a Bayesian estimator
of this class of SBVARs.
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The Sims and Zha (1998) SVAR Prior and Estimator, I

▶ Consider the K-model

A0Yt = a +
p∑
j=1

AjYt−j + ηt , ηt ∼N
(
0n×1, In×n

)
.

▶ This SVAR in simultaneous (static) equations system is YYYA0 − XXXAAA = ΞΞΞ.

1. Define ZZZ =
[
YYY −XXX

]
andAAA =

[
A0 AAA

]′, where AAA collects the intercept
vector a and p slope coefficient matrices into a n × n(p + 1) matrix.

2. =⇒ The likelihood function of the SVAR is

H
(
AAA
∣∣∣YYY) ∝∝∝

∣∣∣A0

∣∣∣T exp
{
−1

2

(
A0Yt − a −A

(
L
)
Yt−1

)′(
A0Yt − a −A

(
L
)
Yt−1

)}
∝∝∝

∣∣∣A0

∣∣∣T exp
{
−1

2
tr
(
AAA′ZZZ′ZZZAAA

)}
=

∣∣∣A0

∣∣∣T exp
{
−1

2
aaa′AAA

(
Ink

O
ZZZ′ZZZ

)
aaaAAA

}
,

where k = np and aaaAAA = vec
(
AAA
)

is a n
(
k+n

)
× 1 column vector.
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The Sims and Zha (1998) SVAR Prior and Estimator, II

▶ Consider the prior for AAA, g
(aaaAAA) = g(aaa0

)
g
(aaaAAA

∣∣aaa0
)
, where

1. aaa0 = vec
(
AAA0
)
, aaaAAA = vec

(
AAA
)
, g
(aaaAAA

∣∣aaa0
)
∼ N

(
aaaAAA −aaa0, ΩΩΩ(aaa0

))
,

2. and the zero restrictions on aaa0 can impose singularities
on the distribution (i.e., there are points in the distribution
with zero probability) of g

(aaa0
)
, but

3. this places no restrictions on the form g
(aaa0

)
can take.

▶ The result is the posterior distribution of aaaAAA

g
(aaaAAA∣∣YYY) ∝∝∝

∣∣∣A0

∣∣∣T exp
{
−1

2
aaa′AAA

(
Ink

O
ZZZ′ZZZ

)
aaaAAA

}∣∣∣ΩΩΩ(aaa0
)∣∣∣−0.5

× exp
{
−1

2

[
aaaAAA −aaa0

]ΩΩΩ(aaa0
)−1

[
aaaAAA −aaa0

]′}
g
(aaa0

)
,

where

aaa′AAA
(
Ink

⊗
ZZZ′ZZZ

)aaaAAA = aaa′0
(
Ink

⊗
YYY′YYY

)aaa0+aaa′AAA
(
Ink

⊗
XXX′XXX

)aaaAAA−aaa′AAA
(
Ink

⊗
XXX′YYY

)aaa0.
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The Sims and Zha (1998) SVAR Prior and Estimator, III

▶ The quadratic aaa′AAA
(
Ink

⊗
ZZZ′ZZZ

)aaaAAA is conditional on aaa0 and

exp
{
−1

2

[
aaaAAA −aaa0

]ΩΩΩ(aaa0
)−1

[
aaaAAA −aaa0

]′}
is quadratic in aaaAAA.

1. =⇒ the posterior of aaaAAA is g
(aaaAAA

∣∣aaa0, YYY
)
∼ N

(
h̃
(aaa0

)
, Ω̃ΩΩ(aaa0

))
, where

2. the posterior variance and mean are Ω̃ΩΩ(a0
)
=
[(

Ink
⊗

XXX′XXX
)
+ΩΩΩ(a0

)−1
]

and h̃
(aaa0

)
= Ω̃ΩΩ(a0

)[(
Ink

⊗
XXX′YYY

)
ĥ
(aaa0

)
+ΩΩΩ(a0

)−1h
(aaa0

)]
.

3. Note the length of the column vector aaaAAA = nk = n2p, where n = 6
and p = 6 =⇒ dim

(aaaAAA
)
= 216.

▶ Similarly the posterior distribution of aaa0 is

g
(aaa0

∣∣YYY) ∝∝∝
∣∣∣A0

∣∣∣T ∣∣∣(InkOXXX′XXX
)ΩΩΩ(aaa0

)
+ In2

∣∣∣−0.5

× exp

{
−1

2

[
aaa0

(
Ink

O
YYY′YYY

)
aaa′0

+ h
(aaa0

)′ΩΩΩ(aaa0
)−1h

(aaa0
)
− h̃

(aaa0
)′Ω̃ΩΩ(aaa0

)−1h̃
(aaa0

)]}
.
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The Sims and Zha (1998) SVAR Prior and Estimator, IV

▶ The dimension of aaaAAA is problematic for Monte Carlo sampling =⇒ draw n2p
coefficients from g

(aaaAAA
∣∣aaa0

)
to update and construct g

(aaaAAA
∣∣aaa0, YYY

)
.

▶ Sims and Zha show the problem can be decomposed into n LS regressions.

▶ The idea is

1. the SBVAR needs to have a SUR format and ΩΩΩ(aaa0
)

is chosen to induce

scalar multiples of In and/or XXX′XXX =⇒ ΩΩΩ(aaa0
)
= cI

⊗ΩΩΩAAA

(ΩΩΩAAA ≡ ΩΩΩ(aaa0
))

,

2. where c > 0 and ΩΩΩAAA need not be symmetric in the sense ΩΩΩAAA,ℓ ≠ ΩΩΩAAA,j .
3. Still, there is independence across the n regressions

=⇒
(
Ink

⊗
XXX′XXX

)
+ ΩΩΩ(aaa0

)
∝
(
Ink

⊗
XXX′XXX

)
+ diag

{ΩΩΩAAA,1, ΩΩΩAAA,2, . . . , ΩΩΩAAA,n
}

= diag
{
XXX′XXX+ΩΩΩAAA,1, XXX′XXX+ΩΩΩAAA,2, . . . , XXX′XXX+ΩΩΩAAA,n

}
.

4. =⇒ There is correlation in the slope coefficients across equations, but
of a special form =⇒ slope coefficients have a block diagonal structure.

▶ Beliefs about this correlation need to be embedded in g
(aaaAAA

∣∣aaa0
)

and g
(aaa0

)
.
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The Sims and Zha (1998) SVAR Prior and Estimator, V

▶ Sims and Zha start from the MP prior =⇒ the reduced form VAR(p) is

Yt = c +
p∑
j=1

BjYt−j + εt , εt ∼N
(
0n×1, ΩΩΩ).

where c = A−1
0 a, Bj = A−1

0 Aj , j = 1, . . . , p, and εt = A−1
0 ηt .

▶ Under the MP, E
{
b
}
= vec

([
In 0n×n . . . 0n×n

])
and ΩΩΩb is given by the MP.

1. =⇒ E
{
AAA
∣∣A0

}
=
[
A0 0n×n . . . 0n×n

]′
and ΩΩΩAAA

∣∣A0 = diag
(
AAAiℓ,j

)
, where diag

(
AAAiℓ,j

)
= λ0λ1

jλ3σ2
ℓ

, i = ℓ, j = 1, . . . , p, and = λ0λ2 otherwise.

2. =⇒ λ0, λ1, λ2, and λ3 denote the tightness priors on the variances
of A0, AAA, a, and the decay rate of lags j = 2, ..., p, respectively.

3. Sims-Zha treat a SBVAR as a SEM =⇒ there is no a prior normalization
along the diagonal of A0 =⇒ λ0 and λ1 do not impose separate prior
beliefs on own lags and lags of the other n−1 elements of Yt .

4. Sims-Zha scale factors differ from the MP =⇒ E
{
ηtη

′
t
}
= In not ΩΩΩ.

5. Given priors on elements of A0 are correlated =⇒ E
{
AAA
∣∣A0

}
gives

b = vec
(
A−1

0 AAA
)

correlated priors =⇒ a prior on A0,ij , i ≠ j, affects
the prior of A1,ij .
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The Sims and Zha (1998) SVAR Prior and Estimator, VI

▶ There are several more priors invoked by Sims and Zha to estimate
the K-model SBVAR that can be added as dummy observations.

1. λ4 = the random walk prior applied to the sum of own coefficients
in a regression =⇒ YYYA0 − XXXAAA = ΞΞΞ if YYYi = λ4p−1∑p

ℓ=1 Yii,ℓ,t and

XXXi = λ4m−1∑m
ℓ=1 Yii,ℓ,t , m < p the best forecast of Yi,t is its own lags

with other variables having no role =⇒ when λ4 -→ ∞, Yt is a full rank
multivariate unit root =⇒ can difference the data ∆Yt , and

2. λ5 = the cointegration prior implying stationary relationships among
the elements of Yt =⇒ duplicate the prior λ4 using λ5, but m < p−1,
and XXXi = λ5 for m = p.

3. λ3 and λ4 control the tightness of the prior smoothing distributed lags
of a regression =⇒ prevents long own lag structures from acting as if a
deterministic function dominates EtYi,t+j ,

4. When λ5 -→ ∞, Yt is a reduced rank multivariate random walk
=⇒
[
In −

∑p
j=1 Aj

]
YYY = A−1

0 c and if c = 0n×1 implying less than

n random walks driving Yt =⇒ common trends or cointegration.

5. Collect the priors in Λ = [λ0 λ1 λ2 λ3 λ4 λ5
]′.
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The Sims and Zha (1998) SVAR Prior and Estimator, VII

▶ In summary, generating a posterior distribution for AAA, g
(aaaAAA

∣∣aaa0, YYY
)
, is easy.

1. =⇒ The prior g
(aaaAAA

∣∣aaa0
)

is multivariate normal with variance ΩΩΩ(aaa0
)
,

2. =⇒ aaaAAA is g
(aaaAAA

∣∣aaa0, YYY
)
∼ N

(
h̃
(aaa0

)
, Ω̃ΩΩ(aaa0

))
, where

3. the n regressions of the SBVAR can be estimated using LS,
given the SBVAR can be mapped into a SUR model and Λ.

▶ Constructing the posterior of A0, g
(aaa0

∣∣YYY
)
, is more difficult.

1. Given the zeros or hard restrictions imposed on A0 =⇒ identification.
2. Need priors for the non-zero elements, Anz,ij,0.

▶ The problem is g
(
Anz,ij,0

)
depends on A0 being just- or over-identified,

1. the size of the sample relative to n = dim
(
Yt
)
, and that

2. prior restrictions on aaa0 apply to the structural slope coefficients
through A0, which imposes prior restrictions on the reduced form
regressions.
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The Sims and Zha (1998) SVAR Prior and Estimator, VIII

▶ Sims and Zha suggest the priors on these non-zero parameters, which are
soft restrictions, should be non-informative =⇒ Anz,ij,0 ∝ 1.

▶ A often used non-informative prior is g
(
Anz,ij,0

)
∼ N

(
0, σ2

(
Anz,ij,0

))
=⇒ with T large enough, the effect of n on g

(
Anz,ij,0

)
-→ 0.

▶ Can impose a prior assuming independence across

1. the structural regressions =⇒ g
(
Anz,ij,0

)
∼ N

(
0, λ2

6

/
σ2
i
)
, where σ2

i
is the prior variance of the error of the ith structural regression,
which fixes the variance of the non-zero elements of the ith row
of A0 and E

{
Anz,ij,0Anz,ℓs,0

}
= 0 or

2. the reduced form regressions =⇒ g
(
Anz,ij,0

)
∼ N

(
0, λ2

6

/ΩΩΩii),
where ΩΩΩii is the prior variance of the error of the ith
reduced form regression.
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The Sims and Zha (1998) SVAR Prior and Estimator, IX

▶ Still, numerical methods are needed to compute g
(aaa0

∣∣YYY
)
, given

g
(
Anz,ij,0

)
∼ N

(
0, σ2

(
λ6
))

.

▶ Have a choice of importance sampling (IS), Gibbs sampling, or
Metropolis-Hasting (MH) Markov chain Monte Carlo (MH-MCMC) simulation.

▶ Waggoner and Zha (JEDC, 2003) advise using Gibbs sampling because
IS needs a large number of iterations to cover the entire posterior density.

1. If g
(aaa0

∣∣YYY) is non-normal =⇒ IS simulator is inefficient and needs many, many
steps to produce a reasonable approximation of this posterior.

2. However, computing g
(aaa0

∣∣YYY) using a Gibbs sampler involves constructing an
algorithm that iterates between g

(aaa0
∣∣YYY) and aaaAAA is g

(aaaAAA

∣∣aaa0, YYY
)
.

▶ IS relies on a finite number M of iid random draws from an arbitrary density f
(aaa0

)
to approximate g

(aaa0
∣∣YYY) =⇒ the goal is to compute

E
{
f
(aaa0

)}
=
∫
f
(aaa0

)
g
(aaa0

∣∣YYY)daaa0

/∫
g
(aaa0

∣∣YYY)daaa0.

▶ The approximation depends on the weight or importance ratio (IR), ω
(aaa0

)
,

1. smooths the approximation by giving less (greater) mass to posterior draws
of g

(aaa0
∣∣YYY) that occur frequently (infrequently),

2. where ωj
(aaa0

)
= g

(aaa0,j
∣∣YYY)/f (aaa0,j

)
, j = 1, . . . ,M.
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The Sims and Zha (1998) SVAR Prior and Estimator, X

▶ An IS algorithm to calculate g
(aaa0

∣∣YYY) consists of

1. compute the mode, aaa0,MD , of g
(aaa0

∣∣YYY) and the Hessian at aaa0,MD
=⇒ maximize the likelihood of the non-recursive SBVAR using
classical optimization methods to compute these moments
of g

(aaa0
∣∣YYY) (may need to “calibrate” AAA to run the optimizer),

2. the computed Hessian of aaa0,MD , ΩΩΩaaa0,MD , is the covariance matrix

of the prior g
(aaa0

)
= N

(aaa0,MD , ΩΩΩaaa0,MD
)

or g
(aaa0

)
= t

(
aaa0,MD , n+ 1

)
,

conditional on ΩΩΩaaa0,MD , when drawing aaa0, in the IS, which

3. sample f
(aaa0,j

)
and g

(aaa0,j
∣∣YYY) j = 1, . . . ,M times to generate

the IR ωj
(aaa0

)
=⇒ compute g

(aaa0
∣∣YYY) and its ΩΩΩaaa0 as the weighted

average f̃
(aaa0

)
=
∑M
j=1 f

(aaa0,j
)
ωj
(aaa0

)/∑M
j=1ωj

(aaa0
)
, and

Ω̃ΩΩaaa0 = M−1∑M
j=1

[
f
(aaa0,j

)
− f̃

(aaa0
)]2[

ωj
(aaa0

)]2/[∑M
j=1ωj

(aaa0
)]2

,

where f̃
(aaa0

) Pr-------------→ E
{
g
(aaa0

∣∣YYY)} and Ω̃ΩΩaaa0

Pr-------------→ ΩΩΩaaa0 .
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The Sims and Zha (1998) SVAR Prior and Estimator, XI

▶ Sims, Waggoner, and Zha (JofE, 2008) develop a Metropolis-Hastings (MH) within
a Gibbs sampler algorithm to estimate a MS-BVAR that can be applied to a fixed
coefficient K-model BVAR.

1. Repeat step 1 of the IS algorithm to compute aaa0,MD , aaaAAA,MD and the Hessians.
2. Priors for A0 and AAA are constructed after imposing identifying restrictions

developed by Waggoner and Zha (JEDC, 2003) on the likelihood of the SBVAR.
3. The restrictions are A = S + SA0, A0,i = Ujaaai and AAAj = Vjbbbi − WjUjaaai,

bbbi = ΨΨΨ isssi, where i = 1, . . . , n, E
{
S
}
= 0 implies a random walk prior because

S = In, Uj , Vj , and Wj , and ΨΨΨ i, which is an orthonormal matrix, ΨΨΨ iΨΨΨ ′i = I.
4. =⇒ The priors of aaai and sssi are normal centered on aaa0,MD and aaaAAA,MD with

covariances
(
UjΩΩΩ−1

aaa0,j ,MD
U′j
)−1

and
(ΨΨΨjΩΩΩ−1

sssj
ΨΨΨ ′j)−1

.

5. The Gibbs sampler draws from g
(
sssi
∣∣YYY, ΩΩΩ, aaa1, . . . ,aaan

)
, i = 1, . . . , n =⇒ prior

assumes independence across the structural regressions, which include the
intercepts of the SVAR.

6. The MH step samples g
(
aaai
∣∣YYY, ΩΩΩ, S, aaa1, . . . ,aaaj≠i, . . . ,aaan

)
to generate the

posterior of aaai, i = 1, . . . , n, and evaluates whether these or the previous
draws of these parameters raise the likelihood of the SBVAR.

▶ Similarly, Canova and Pérez-Forero (QE, 2015) propose a Metropolis inside a Gibbs
sampler to estimate a time-varying parameter SBVAR that can be applied to a fixed
coefficient K-class SVAR.
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SVAR Estimation: A Metropolis in Gibbs Algorithm, I

▶ The Canova and Pérez-Forero estimator exploits several facts about a K-class SVAR,

A0Yt = a +
∑p
j=1 AjYt−j + ηt = A−1

0 c + A−1
0

∑p
j=1 BjYt−j + ηt , ηt ∼N

(
0n×1, In×n

)
.

▶ Reparameterize the K-class SVAR as a system of “static” regressions.

1. RememberXXX′
t = In

⊗[
Y′t−1 . . . Y′t−p 1

]
and B = vec

([
B1 . . . Bp c

])
=⇒ write

the SVAR in concentrated form, A0

(
Yt − XXX′

tB
)
= ηt , where B is a draw from

the posterior of the reduced from intercept and slope coefficients.

2. Define Ŷt ≡ Yt − XXX′
tB and recall vec (A0) = SA0aaa0 + sA0 , where sA0 = vec

(
In
)

and SA0 is n2 × dim
(aaa0

)
=⇒
(
Ŷ′t
⊗

In2

) [
SA0aaa0 + sA0

]
= ηt

⊗
In2 .

3. Let Y′t ≡
(
Ŷ′t
⊗

In2

)
sA0 and ZZZt = −

(
Ŷ′t
⊗

In2

)
SA0 =⇒ Y′t = ZZZtaaa0 + ηt

⊗
In2 ,

which is a system of static regressions =⇒ estimate A0 conditional on B.
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SVAR Estimation: A Metropolis in Gibbs Algorithm, II

▶ The posterior P
(
aaa0

∣∣∣YYY, B, ΩΩΩaaa0

)
samples aaa0 conditional on B, where ΩΩΩaaa0 is

the posterior covariance matrix of aaa0.

▶ The Gibbs step samples B conditional on a normal prior conditional on B, YYY,
and aaa0, where B is the prior mean =⇒ the normal prior suggests the posterior

P
(

B
∣∣∣YYY, B, ΩΩΩε) ∼ N (

B, ΩΩΩB

)
that is not conjugate, where ΩΩΩε = A−1

0 A−1 ′
0 .

▶ The Metropolis step decides whether to keep the existing draw of aaa0 or accept

a new draw from P
(
aaa0

∣∣∣YYY, B, ΩΩΩaaa0

)
using a criterion comparing the likelihoods

of the SVAR evaluated at the existing and new draws of the impact coefficients.

▶ =⇒ Update ΩΩΩε , the covariance matrix of reduced form errors, using A
−1
0 ,

which is a nonlinear function of the impact coefficients, aaa0.
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SVAR Estimation: A Metropolis in Gibbs Algorithm, III
▶ The source for the Gibbs sampler part of the algorithm that generates draws of B̂ is

Koop and Korobilis (2010, “Bayesian multivariate time series methods for empirical
macroeconomics,” Boston, MA: Now Publishers). The Metropolis part of the
algorithm that draws aaa0 is adapted from Canova and Pérez-Forero (QE, 2015).

▶ The Gibbs sampler rests on the prior B ∼ N
(

B̃, Ω̃ΩΩB

)
, aaa0,j

(
=⇒ ΩΩΩε,j , j = 1, . . . , J

)
,

and updating equations

Ω̃ΩΩB =
ΩΩΩ−1

B +
T∑
t=1

XXX′
tΩΩΩ−1

ε,j−1XXXt

−1

and B̃ = Ω̃ΩΩB

ΩΩΩ−1
B B +

T∑
t=1

XXX′
tΩΩΩ−1

ε,j−1Yt


to calculate B̃j+1 and Ω̃ΩΩB,j+1.

▶ The Gibbs draw is Bj ∼ N
(

B̃, Ω̃ΩΩB

)
at iteration j.

1. The prior mean B is set to the OLS estimates, B̂, of the reduced form intercept
and slope coefficients while

2. the prior on the covariance matrix ΩΩΩB = rB Ω̂ΩΩB, where rB is a strictly positive

tuning parameter and Ω̂ΩΩB is the OLS estimate of the covariance matrix of B.

▶ However, if the largest eigenvalue of Bj ≥ 1, toss out the jth draw of the reduced
form intercept and slope coefficients and set Bj = Bj−1 =⇒ this part of the prior
maintains the posterior is consistent with a stationary SVAR.
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SVAR Estimation: A Metropolis in Gibbs Algorithm, IV

▶ The Metropolis step needs a prior on aaa0 to generate the proposal.

1. Draw aaa0,j from the normal distribution N
(
aaa0,j−1, raaa0 ΩΩΩaaa0 ,j−1

)
2. or if the distribution of aaa0 is believed to have fat tails, draw

from a prior with a t–distribution, aaa0,j ∼ t
(
aaa0,j−1, raaa0 ΩΩΩaaa0 ,j−1, τ

)
,

3. where ΩΩΩaaa0 ,j =
[
ZZZ′t
(
η′aaa0 ,j,t

ηaaa0 ,j,t

)−1
ZZZt
]−1

, ηaaa0 ,j,t = Y
′
t − ZZZtaaa0,j ,

raaa0 is a strictly positive tuning parameter, and the prior

on the degrees of freedom of the t -distribution is τ ≥ 4.
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SVAR Estimation: A Metropolis in Gibbs Algorithm, V

▶ Next, the Metropolis step in the Gibbs sampler decides whether to update the

posterior of aaa0 to the new proposal aaa0,j or keep the previous draw aaa0,j−1.

▶ This decision relies on the Metropolis criterion, which compares the likelihood

of the SVAR under the new proposal aaa0,j and the previous draw aaa0,j−1.

1. The decision rule compares the likelihood of the SVAR evaluated at aaa0,j

with the likelihood produced by aaa0,j−1, where the likelihood of the SVAR is

H
(
YYY
∣∣∣aaa0, B

)
=
(
2π
)−0.5nT

∣∣∣A0

∣∣∣T exp
{
−1

2

(
Y′t − ZZZtaaa0

)′(
Y′t − ZZZtaaa0

)}
.

2. The Metropolis step compares ωj,j−1 = H
(
YYY
∣∣∣aaa0,j , Bj

)/
H
(
YYY
∣∣∣aaa0,j−1, Bj

)
with uj ∼ U

(
0, 1

)
=⇒ if uj < ωj,j−1 update to aaa0,j ; otherwise keep aaa0,j−1.

3. The decision criterion updates to the new proposal for aaa0, aaa0,j , if the

“probability” it increases H
(
YYY
∣∣∣aaa0, B

)
is greater than 50 percent.

▶ Run the Metropolis within Gibbs sampler for J steps, j = 1 . . . , J, to estimate the
fixed coefficient non-recursive K-class SVAR.
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SVAR Estimation: A Summary of the Metropolis in Gibbs Algorithm

▶ Canova and Pérez-Forero develop a Metropolis in Gibbs sampler to calculate the
posterior of a K-class SVAR consisting of the following steps.

1. Given the initial condition aaa0,0
(
=⇒ΩΩΩε,0) and priors ΩΩΩaaa0

, B, and ΩΩΩB, draw

B1 ∼ N
(

B̃, Ω̃ΩΩB

)
using the updating equations to calculate B̃ and Ω̃ΩΩB.

2. If the largest eigenvalue of B1 ≥ 1, toss out this draw and repeat step 1.

3. Given aaa0,0 and ΩΩΩaaa0 ,0, draw aaa0,1 from the normal (or t -)distribution.

4. Conditional on B1, construct Y′t − ZZZtaaa0 to calculate H
(
YYY
∣∣∣aaa0,1, B1

)
and

H
(
YYY
∣∣∣aaa0,0, B1

)
=⇒ draw u1 from U

(
0, 1

)
, compute the log likelihood ratio

ω1,0, and engage the Metropolis criterion to decide whether the proposed
update aaa0,1 improves on aaa0,0 or not.

5. If u1 ≥ ω1,0, repeat steps 1 through 4; otherwise repeat steps 1 through 4
replacing aaa0,0 with aaa0,1 to generate realizations of aaa0,2 and B2.

▶ Run the sampler for J steps, j = 1 . . . , J, to calculate the posterior of the fixed
coefficient non-recursive K-class SVAR.

▶ The initial conditions aaa0,0 and ΩΩΩaaa0,0 can be set equal

1. to appropriately sized identity matrices with diagonal elements multiplied
by some scalar on the open interval between zero and one

2. or apply classical optimization tools to estimate aaa0,0 by maximizing

H
(
YYY
∣∣∣aaa0, B̂

)
=⇒ ΩΩΩaaa0,0 is the inverse of the Hessian of H

(
YYY
∣∣∣aaa0,0, B̂

)
.
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Introduction

▶ Macro theory also provides long-run identifying restrictions.

1. A one sector growth model in which the exogenous trend is a unit root
TFP process has a balanced growth path =⇒ predicts the long run level
of output is driven only by shocks to the trend, which are TFP shocks.

2. A monetary growth model that obeys the classical dichotomy allows
real variables respond to nominal shocks only in the short-run and
medium-run and not in the long-run =⇒ long-run monetary neutrality.

3. The Fisher equation suggests that in the long run rt and πt move
proportionally in response to nominal shocks to keep the real interest
rate stable =⇒ in the long-run the ex post real rate rt − πt is
independent of nominal shocks.

▶ These long-run identifying assumptions imply three zero restrictions on the
long-run responses of the level of output to aggregate demand and money
market shocks and inflation to money market shocks given there are these
two shocks plus an aggregate supply shock in the economy.

▶ The supply, demand, and money market shocks are tied to yt , πt , and the
ex post real rate rt − πt , respectively.
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Long-Run SVAR Identification

▶ Unit roots in yt and πt imply three long-run restrictions.

1. Etyt+j is driven only by the TFP (or supply) shock, υs,t , as j -→ ∞,

2. Etπt+j responds to υs,t , and the demand shock, υd,t , as j -→ ∞.

3. Or ∂Etyt+j
/
∂υd,t = ∂Etyt+j

/
∂υm,t = ∂Etπt+j

/
∂υm,t = 0, where

the money market shock υm,t = υmd,t − υms,t .
4. =⇒ Et

{
rt+j −πt+j

}
responds to υs,t , υd,t , and υm,t , as j -→ ∞.

5. This suggests recursive long-run restrictions to identify a SVAR.

▶ Start with a reduced-form VAR
(
p
)

for Yt =
[∆yt ∆πt (rt −πt)]′

Yt = c +
p∑
j=1

BjYt−j + εt , εt ∼N
(
0n×1, ΩΩΩn×n),

where the reduced-form errors are εt =
[
εy,t επ,t εr−π,t

]′.
▶ Its reduced form VMA(∞) is Yt = µY +

∑∞
ℓ=0 Cℓεt−ℓ, where C0 ≡ In and

C
(
L
)
=
[
In − B

(
L
)]−1 =⇒ Wold representation.
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Mapping of Long-Run SVAR Identification

▶ A structural VMA(∞) also exists, Yt = µY +
∞∑
ℓ=0

ΓΓΓℓηt−ℓ, ηt ∼ N
(
0n×1, In

)
.

▶ Recover the SVAR from the structural VMA(∞) using the map from the
structural to reduced-form errors ηt = ΓΓΓ−1

0 εt , where ηt =
[
υs,t υd,t υm,t

]′.
▶ Mapping relies on B

(
L
)

and ΩΩΩ to recover the n2 = 9 elements of ΓΓΓ0.
1. ΩΩΩ = ΓΓΓ0ΓΓΓ ′0, which gives 0.5

(
n2 +n

)
(= 6 when n = 3) nonlinear

equations to solve for 6 of the 9 elements of ΓΓΓ0.

2. Three other elements of ΓΓΓ0 are found from the three zero restrictions
on the long-run responses of yt to υd,t and υm,t and πt to υm,t .

3. The zero restrictions are embedded in the
(
1,2

)
,
(
1,3

)
, and

(
2,3

)
elements of

∑∞
ℓ=0 ΓΓΓℓ =⇒ accumulated IRFs at the infinite horizon.

▶ Maintained assumption of the SVAR identification is that yt and πt are I
(
1
)

=⇒ some shocks to the levels of output and inflation have permanent effects
(i.e., yt and πt have unit roots).

▶ This long-run identification is the Blanchard and Quah (1989) version
of the Beveridge-Nelson decomposition.
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An Aside: The Beveridge-Nelson Decomposition

▶ Times series econometrics treats the long-run behavior of a I
(
1
)

variable,
which is restricted by its trend, as atheoretic.

▶ There are several notions of what a trend is in macro, but in times series
econometrics the two polar cases are trend stationary (TS) and difference
stationary (DS) models.

▶ These models impose no economically relevant restrictions on the trend
(or permanent) and transitory components of a time series =⇒ limits
their usefulness for macro and finance.

▶ For example, consider the hypotheses that the natural log of real GDP
possesses a unit root =⇒ what is the stochastic trend of output?

▶ This assumpion begs an important question =⇒ since the trend of real GDP
is unobservable, how can it be constructed?

▶ Beveridge and Nelson (1981, Journal of Monetary Economics) develop a
decomposition to measure the trend (or permanent) component of a time
series that is empirically relevant for macro and finance.
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TS and DS Models

▶ Consider the TS model, xt = γ0 + γ1t + α
(
L
)
ut , where α0 ≡ 1.

▶ The TS trend and transitory components are γ1t and α
(
L
)
ut .

▶ The IRF of xt+j to ut consist of the coefficients of the MA(∞)
of the Wold representation, which are αj , j = 1, 2, . . ..

▶ For the DS model,
(
1 − L

)
xt = γ0 + β(L)et , where β0 ≡ 1.

▶ The IRF of
(
1 − L

)
xt+j with respect to a unit change in et are the

coefficients of the MA(∞), βj , j = 1, 2, . . ..

▶ In the case of the DS model, the IRF of xt+j is the sum of the MA

coefficients,
∑j
i=0 βj , j = 1, 2, . . . =⇒ as j -→∞,

∑∞
i=0 βj ≡ β

(
1
)
.

▶ In the limit, this is the IRF of the level response of xt in the DS model.

▶ This generates the DS trend and transitory components β
(
1
)

and β
(
L
)
et .
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A Map from a TS Model to a DS Model, I

▶ Suppose xt is the natural log of real GDP and the
choice is between the TS model and DS model.

▶ If truth is the TS model, the DS model remains valid.

▶ The DS model is legitimate because
(
1 − L

)
α
(
L
)
= β

(
L
)
.

▶ In this case, the DS model is covariance stationary, but a
non-invertible unit MA root is induced in xt .

▶ The non-invertible unit MA root shows the IRF of
(
1 − L

)
xt

at the infinite horizon is
(
1 − 1

)
α
(
1
)
= β

(
1
)
= 0.

▶ This result is consistent with the TS model because its IRF
equals zero at the infinite horizon =⇒ a change in et has
no long-run effects on xt under the TS model.
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A Map from a TS Model to a DS Model, II

▶ The important point is the only way to distinguish between TS and DS
models is the behavior of these models at the infinite horizon.

▶ Serial correlation in xt does not matter (except its impact on the small
sample properties of unit root tests).

▶ Nonetheless, the DS model allows for a rich set of dynamics in the IRF
of xt not possible in TS models.

▶ For example, given xt ∼ I
(
1
)
, the IRF of xt can exhibit decay or mean

reversion to the long run trend at long horizons (i.e., ten years or more).

▶ Long-horizon mean or trend reversion is observed in stock prices and
other asset prices and returns.

▶ Real GDP and other macro aggregates tend to show mean reversion
at the business cycle horizons of one to, as long as, five years.
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The Beveridge-Nelson (BN) Decomposition, I

▶ Let xt be the natural log of real GDP and truth is the DS model.

▶ Proposition: If xt is a stochastic DS process, xt can always be decomposed
into a covariance stationary process, εt , and a random walk trend, τt ,

xt = τt + εt .

▶ xt is an unobserved components (UC) model =⇒ τt and εt are latent or
hidden state variables driving movements in xt .

▶ Use the Beveridge-Nelson (BN) decomposition to show
The BN trend is the conditional expectation of the random walk com-
ponent for any UC representation of an I

(
1
)

process.

▶ See Watson (1986, Journal of Monetary Economics) and Morley, Nelson,
and Zivot (2003, Review of Economics and Statistic).
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The Beveridge-Nelson (BN) Decomposition, II

▶ The BN decomposition begins with the Wold representation of the DS model(
1 − L

)
xt = γ + φ

(
L
)
ηt , φ0 ≡ 1.

▶ Adopt the hypothesis the Wold representation decomposes xt into its
1. trend, τt+1 = γ + τt + φ

(
1
)
ηt+1, ηt+1 ∼ N

(
0, σ2

η
)
, which is a

random walk with drift, and

2. a transitory component, εt = φ̃
(
L
)
ηt , which is a MA(∞), where

φ̃ℓ = −
∑∞
i=ℓ+1φi, ℓ = 0, 1, 2, . . ..

▶ The latent covariance stationary εt induces serial correlation in xt and a
non-invertible MA unit root in the first difference of xt .

▶ Example: Let φ0 = 1 and φj = 0, j = 1, 2, . . . , which implies xt = τt , or

xt = γ + xt−1 + ηt .

▶ =⇒ xt is a random walk with drift that lacks serial correlation.
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The BN Factorization, I

▶ Factor a DS model with the BN decomposition with the lag polynomial φ
(
L
)
.

▶ Pass the first difference operator through the UC model of xt

(
1 − L

)
xt =

(
1 − L

)
τt +

(
1 − L

)
εt = γ + φ

(
1
)
ηt +

(
1 − L

)
φ̃
(
L
)
ηt .

▶ Also, remember φ
(
1
)
=
∑∞
i=0φi = φ0 + φ1 + φ2 + . . . .
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The BN Factorization, II

▶ Beginning at ℓ = 0, accumulate the MA coefficients

φ̃0 = −
∞∑
i=1

φi, φ̃1 = −
∞∑
i=2

φi, . . . , φ̃j = −
∞∑

i=j+1

φi, . . . .

▶ All that remains is to unwind φ
(
1
)

and
(
1 − L

)
φ̃
(
L
)
=⇒

φ
(
1
)
+
(
1 − L

)
φ̃
(
L
)
=

∞∑
i=0

φi +
∞∑
i=0

φ̃iLi −
∞∑
i=0

φ̃iLi+1

=
∞∑
i=0

φi −
∞∑
i=1

φi −
∞∑
i=2

φiL −
∞∑
i=3

φiL2 − . . . +
∞∑
i=1

φiL +
∞∑
i=2

φiL2 +
∞∑
i=3

φiL3

=
∞∑
i=0

(
φi − φi−1

)
−

∞∑
i=2

(
φi − φi−1

)
L −

∞∑
i=2

(
φi − φi−1

)
L2

−
∞∑
i=3

(
φi − φi−1

)
L3 − . . . = φ0 + φ1L + φ2L2 + φ3L3 + . . . .
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The BN Factorization, III

▶ As the BN decomposition predicts, the infinite sum is
∑∞
i=0φiLi = φ

(
L
)
.

▶ The BN decomposition is only one way to break xt into trend and transitory
elements.

▶ Its usefulness stems from the properties of the trend, τt .

▶ Forecasts of τt and xt are equivalent at the infinite horizon =⇒ at j -→ ∞,
forecast of xt equals xt plus its expected changes from j = t+1 to j = ∞

lim
j -→∞

Et
{
xt+j − jγ

}
= xt +

∞∑
i=1

[
Et
(
1 − L

)
xt+i − γ

]
.

▶ This implies limj -→∞ Et
{
xt+j − jγ

}
= limj -→∞ Et

{
τt+j + εt+j − jγ

}
= τt

=⇒ the BN trend because it is a random walk with drift and εt is transitory.

▶ =⇒ xt below (above) τt predicts xt is expected to rise (fall) in the future.

▶ The economic interpretation of τt is that it measures the trend in xt
=⇒ its long run forecast.
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The BN Factorization, IV

▶ What is (are) the difference(s) between TS and DS models?

▶ Remember the IRF of xt+j is limj -→∞
[
Etxt+j − Et−1xt+j

]
= φ

(
1
)
ηt ,

it follows

τt − τt−1 = lim
j -→∞

[
Etxt+j − Et−1xt+j − γ

]
.

▶ This is the BN definition of the trend, τt =⇒ the var
(
τt − τt−1

)
= φ

(
1
)2σ2

η ,
which is the innovation variance in the trend of xt .

▶ If xt is actually TS, the innovation variance of τt is zero by definition.

▶ Nonetheless, adding a tiny φ
(
1
)

to a TS process produces mean reversion
in xt because of the presence of a small random walk component, τt ,
where variation in the trend can be made arbitrarily small.
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An Alternative BN Decomposition, I

▶ The BN decomposition studied thus far does not yield estimable models.

▶ Innovations of the transitory component, εt , and trend component, τt , are
perfectly correlated =⇒ share the innovation ηt .

▶ An alternative BN decomposition gives τt and εt different innovations.
1. Trend remains a random walk with drift, τt+1 = γ + τt + ηt+1, ηt ∼ N

(
0, σ2

η
)
.

2. The MA lives in the transitory component εt = ψ
(
L
)
υt , υt ∼ N

(
0, σ2

υ
)
.

3. Key assumption is whether E
{
ηt+jυt+ℓ

}
= 0, for j, ℓ = −∞, . . . , -1, 0, 1, . . . , ∞,

or only for j, ℓ = −∞, . . . , -1, 1, . . . , ∞ =⇒ E
{
ηtυt

}
≠ 0

▶ The orthogonality restriction is key to understanding predictions of the BN
decomposition; see Morley, Nelson, and Zivot (2003, Review of Economics
and Statistic).
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An Alternative BN Decomposition, II

▶ Since
(
1 − L

)
xt =

(
1 − L

)
τt +

(
1 − L

)
εt , =⇒

(
1 − L

)
xt = γ + ηt +

(
1 − L

)
ψ
(
L
)
υt .

▶ However, the Wold representation of the DS model restricts the right hand
side of the first difference of xt to equal ηt +

(
1 − L

)
ψ
(
L
)
υt = φ

(
L
)
υt .

▶ Hence, the long run forecast of xt equals ηt +
(
1 − 1

)
ψ
(
1
)
υt = φ

(
1
)
υt

or ηt = φ
(
1
)
υt .

▶ This implies the variance of the random walk component is σ2
η = φ

(
1
)2σ2

υ .
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An Alternative BN Decomposition, II

▶ Although there are differences in the two BN decompositions, the variance
of
(
1− L

)
τt is the same in both.

▶ This is true for any decomposition of xt into trend and transitory elements.

▶ The important point is the random walk component of xt is unrestricted
with respect to its innovation variance.

▶ The upshot is, add an arbitrarily small innovation variance, φ
(
1
)
, to a TS

model, and it becomes a DS model =⇒ xt has long-horizon mean reversion.

▶ This a reminder that the only difference between a TS model and a DS
model resides in φ

(
1
)
.
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Identifying BN Decompositions

▶ A problem still exists with the BN decomposition =⇒ it is always possible
to create a TS process that is arbitrarily close to a DS process.

▶ For example, consider a TS model in which φ
(
1
)
= 0.999 =⇒ the TS process

acts as if or is observationally equivalent to a DS model in finite samples,
say, T < 700.

▶ Add an infinitesimal random walk to the TS model and create a DS model.

▶ In finite samples, unit root tests often lack the power to distinguish between
unit root and stationary processes.

▶ For example, the null of a unit root is a joint test of a unit root process and
restrictions on φ

(
L
)
.

▶ This motivates In finite samples, T < ∞, the failure to reject a unit root only
indicates xt is observationally equivalent to a unit root process.

▶ Restrictions on φ
(
L
)

may be relaxed as the sample size grows =⇒ if T -→ ∞,
can approximate φ

(
1
)

arbitrarily well.
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Summary of the BN Decomposition

▶ The BN decomposition is an easy and intuitive tool for computing the
trend of a I

(
1
)

variable.

▶ Behavior of I
(
1
)

and I
(
0
)

processes differ only at the infinite horizon.

▶ The sampling uncertainty around estimates at the long-horizon and
inference on those estimates can be substantial =⇒ may not have much
confidence in the estimates and inference.

▶ Have only studied univariate processes, but BN intuition carries over to
multivariate models =⇒ multivariate random walks and cointegration.

1. For the former see Stock and Watson (1998, “Testing for common trends,”
Journal of the American Statistical Association 83, 1097–1107).

2. Engle and Granger (1987, “Co-Integration and error correction: Representation,
estimation, and testing,” Econometrica 55, 251–276) introduce cointegration.

3. Multivariate BN trends are referred to as BNSW models; early example in macro
is King, Plosser, Stock, and Watson (1991, “Stochastic trends and economic
fluctuations,” American Economic Review 81, 819–840).

4. Surveys are Watson (1994, “Vector autoregressions and cointegration,” in Engle
and McFadden (eds.), Handbook of Econometrics, v. 4, ch. 47, 2843–2915,
New York, NY: Elsevier B.V.) and chs. 6–9 in Lütkepohl (2007, New
Introduction to Multiple Time Series Analysis, New York, NY: Springer.
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The BNSW Decomposition: A Problem

▶ Estimate a VAR(p) on growth rates of x1,t and x2,t , which are I
(
0
)
.

▶ If the covariance matrix of the VAR residuals is positive definite, trends
driving x1,t and x2,t are independent =⇒ bivariate random walk.

1.
(
1− L

)
x1,t =

(
1− L

)
τ1,t +

(
1− L

)
ε1,t and

(
1− L

)
x2,t =

(
1− L

)
τ2,t +

(
1− L

)
ε2,t

2. The bivariate random walk is
[
τ1,t
τ2,t

]
=
[
γ1
γ2

]
+
[
τ1,t−1
τ2,t−1

]
+
[
η1,t
η2,t

]
.

▶ If not, the VAR on
(
1− L

)
x1,t and

(
1− L

)
x2,t is not fundamental.

1.
(
1− L

)
x1,t =

(
1− L

)
τt +

(
1− L

)
ε1,t and

(
1− L

)
x2,t =

(
1− L

)
τt +

(
1− L

)
ε2,t

2. =⇒
[ (

1− L
)
x1,t(

1− L
)
x2,t

]
=
[

1
1

]
ηt−1 +

[ (
1− L

)
ψ1
(
L
)
υ1,t(

1− L
)
ψ2
(
L
)
υ2,t

]
.

3. Cannot retrieve the fundamental shocks because of unit MA roots in
(
υ1,t , υ2,t

)
.
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The BQ Decomposition: A Fix of the Problem

▶ The problem is x1,t and x2,t share a common trend or cointegrate.
1. =⇒ A stochastic singularity in the growth rates VAR.

2. Its reduced-form errors are linear combinations of the same shocks
=⇒ ΩΩΩ is not positive definite.

▶ A solution is to note that there exists a stationary linear combination,
1. lnx2,t − ϑ lnx1,t = ψ2

(
L
)
υ2,t − ϑψ1

(
L
)
υ1,t , which integrates out

the common trend τt .

2. This is a cointegrating relation, zt =
[
1 − ϑ

] [
lnx2,t lnx1,t

]′
,

where
[
1 − ϑ

]
is the cointegrating vector.

3. Use economic theory or econometrics of cointegration to obtain ϑ.

▶ Estimate a VAR on
(
1−L

)
lnx1,t and zt to obtain fundamental shocks.

▶ Satisfy the BQ decomposition because as j -→ ∞, Etx1,t+1 equals zero
in response to the transitory shock(s) by construction.
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Frequentist Estimation of a SVAR with LR Restrictions, I

▶ Step 1: Estimate the unrestricted VAR by OLS

Yt = c +
p∑
j=1

BjYt−j + εt , εt ∼N
(
0n×1, ΩΩΩn×n).

▶ Step 2: Construct the reduced form VMA(∞), Yt = µY +
∑∞
ℓ=0 Cℓεt−ℓ , where

a. C
(
L
)
=
[
In − B

(
L
)]−1

and C0 ≡ In =⇒ Wold representation.

b. The structural VMA(∞) is Yt = µY +
∑∞
ℓ=0 ΓΓΓ ℓηt−ℓ , ηt ∼ N (

0n×1, In
)
.

c. =⇒ εt = ΓΓΓ0ηt and ΩΩΩ = ΓΓΓ0ΓΓΓ ′0, which gives 0.5
(
n2 +n

)
(= 6 when n = 3)

nonlinear equations to solve for as many of the n2 unknown elements of ΓΓΓ0.

▶ Step 3: Solve for the remaining 0.5
(
n2 −n

)
unknown elements of ΓΓΓ0 using the

0.5
(
n2 −n

)
(= 3 for n = 3) long-run neutrality restrictions.

a.
∑∞
ℓ=0 ΓΓΓ12,ℓ = 0,

∑∞
ℓ=0 ΓΓΓ13,ℓ = 0, and

∑∞
ℓ=0 ΓΓΓ23,ℓ = 0.

b. Since C
(
L
)
εt = ΓΓΓ (L)ηt and εt = ΓΓΓ0ηt =⇒

∑∞
ℓ=0 CℓΓΓΓ0 =

∑∞
ℓ=0 ΓΓΓ ℓ .

c. Define C
(
1
)
=
∑∞
ℓ=0 Cℓ and ΓΓΓ (1) = ∑∞ℓ=0 ΓΓΓ ℓ =⇒ solve the 0.5

(
n2 −n

)
= 3

equations that equal zero in the system C
(
1
)ΓΓΓ0 = ΓΓΓ (1).

▶ Step 4: Given ΓΓΓ0, compute ηt = ΓΓΓ−1
0 εt and the IRFs as ΓΓΓ ℓ = CℓΓΓΓ0, ℓ = 1, 2, . . . .
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An Example of a SVAR Identified on LR Restrictions, II

▶ Estimate a VAR on Yt =
[∆yt ∆πt (rt −πt)]′ by OLS =⇒ obtain B̂

(
L
)

and Ω̂ΩΩ.

▶ Since dim(Yt) = 3, there are 0.5
(
n2 −n

)
= 3 long-run restrictions.

1. The restrictions are
∂Etyt+j
∂υd,t

=
∂Etyt+j
∂υm,t

=
∂Etπt+j
∂υm,t

= 0, as j -→ ∞,

2. which appear in ΓΓΓ (1) =

Γ11
(
1
)

0 0Γ21
(
1
) Γ22

(
1
)

0Γ31
(
1
) Γ32

(
1
) Γ33

(
1
)
.

▶ The nine unknown elements of ΓΓΓ0 are solved for using the

1. three equations in C
(
1
)ΓΓΓ0 = ΓΓΓ (1) in the upper triangle of ΓΓΓ (1) equal to zero

2. together with the six nonlinear equations in the lower triangle of ΩΩΩ = ΓΓΓ0ΓΓΓ ′0.
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Frequentist Estimation of a SVAR with LR Restrictions, II

▶ Another method for computing the BQ decomposition uses the Cholesky
decomposition.

▶ Since ΓΓΓ (L)ηt = C
(
L
)
εt =⇒ ΓΓΓ (1)ΓΓΓ(1)′ = C

(
1
)ΩΩΩC

(
1
)′

.

▶ Also, ΓΓΓ (1)ΓΓΓ(1)′ = C
(
1
)ΓΓΓ0ΓΓΓ ′0C

(
1
)′ =⇒ calculate the Cholesky decomposition,[ΓΓΓ(1)ΓΓΓ(1)′ ]0.5

= C
(
1
)ΓΓΓ0 =

[
C
(
1
)ΩΩΩC

(
1
)′]0.5

=⇒ ΓΓΓ0 = C
(
1
)−1

[
C
(
1
)ΩΩΩC

(
1
)′]0.5

.

▶ Repeat steps 1, 2, and 4 of the previous slide, but

alt-3. replace step 3 by computing ΓΓΓ0 = C
(
1
)−1

[
C
(
1
)ΩΩΩC

(
1
)′]0.5

.

▶ A final note is the procedures for computing the BQ decomposition

1. do not depend on a recursive ordering of the long-run restrictions.

2. There are neither necessary nor sufficient conditions restricting the LR
identification to be recursive =⇒ ΓΓΓ (1) can have non-recursive restrictions.

3. However, the BQ decomposition requires 0.5
(
n2 −n

)
zero restrictions on ΓΓΓ (1)

for just-identification of the SVAR.

Jim Nason
(
BVARs: Lecture 2

)
Empirical Methods: BVARs, Priors, and Identification



Priors for Unrestricted Bayesian VARs

Structural BVARs, Priors, and Identification

Critiques of SVARs

Short Run Restrictions

Long Run Restrictions

Sign Restrictions

Proxy VARs

Identification of SVARs, V: Sign Restrictions, 1

▶ Sign Restrictions: Instead of forcing point restrictions on elements of A0 and/or D,

1. only examine IRFs that are consistent with IRF1:n, ·
(
h
)

that reside
in a pre-selected set,

2. where h is a small integer, say, H in quarterly data =⇒ from
impact, h = 0, to a horizon of one year horizon, H = 5.

3. Sign restrictions can also be applied to FEVDs.

▶ Faust (CRCSPP, 1998) and Uhlig (JME, 2005) are the earliest examples of sign
restrictions in the VAR literature, but their goals and approaches differ.

1. From h = 0 to H, monetary policy shocks contribute < xy% to the FEVD
of output and > xπ% to the FEVD of inflation, which involve imposing
a penalty function on the VAR; see Faust (CRCSPP, 1998).

2. Uhlig (JME, 2005) proposes a sign restriction tied to a contractionary
monetary policy shock lowers y and π from h = 0 to H.

3. Placing sign restrictions on IRFs is a far more popular identification
strategy than is the penalty function approach of Faust (1998).
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Identification of SVARs, V: Sign Restrictions, 2

▶ The original use of sign restrictions to identify VARs is Faust (CRCSPP, 1998).

▶ However, Faust’s goal is evaluate the robustness of identifying restrictions, especially
with respect to output and inflation responses to identified monetary policy shocks.

1. Are SVAR results robust to small changes in identification restrictions?
2. The problem is SVARs often rely on implicit zero restrictions because Yt may

lack variables important for explaining the dynamics and variation of variables
that are included =⇒ omitted variable problem.

3. However, a large dim
(
Yt
)

almost always leads to a SVAR that is only partially
identified =⇒ inference on partially identified models is possible but the degree
of econometric difficulty is much greater.

▶ Faust: Consider the vector of sign restrictions µ applied to IRFi,j
(
ℓ, ℓ + s

)
,

ℓ = 0, 1, . . . , H =⇒ the sign restrictions IRFi,j
(
ℓ, ℓ + s

)
µ ≥ 0.

1. Choose the vector of sign restrictions µ to maximize µ′FEVDi,jµ =⇒ for every
“admissible” SVAR identification, the share of the jth shock in explaining Yi,t
is µ s.t. IRFi,j

(
ℓ, ℓ + s

)
µ ≥ 0 and the normalization µ′µ = 1.

2. Fix µ̃, compute µ̃′FEVDi,j µ̃ s.t. the constraints, ask if the solution satisfies xy%,
3. if yes stop, otherwise check if the IRFs driven by ηj,t are a priori “reasonable.”
4. =⇒ if these IRFs are reasonable, “reject” the xy% hypothesis.
5. Otherwise, add restrictions to penalize these unreasonable IRFs on µ and

restart Faust’s procedure from step 1.
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Identification of SVARs, V: Sign Restrictions, 3

▶ Sign Restrictions: The most widely used method for estimating SVARs on sign
restrictions differs from the approach Faust (1998) advocates.

▶ The standard approach identifies SVARs using methods developed by Uhlig (2005).
1. Impose sign restrictions from impact to some finite H on the responses of

variables either controlled or targeted by the central bank to a contractionary
monetary policy shock.

2. For example, the response of the policy rate is non-negative and increases, say,
by no more than 100 basis points

3. while inflation’s response is not positive (i.e., throw out the price puzzle) and
falls, say, by no more than two percent.

▶ Uhlig proposes to create the IRFs of a sign restricted SVAR by
1. estimating an unrestricted VAR and covariance matrix,ΩΩΩ, of the OLS residuals.

2. Could be a K- or C-model, but most often the SVAR is just-identified and
recursive =⇒ D = ΩΩΩ1/2.

3. Draw K random orthonormal matricesUUUk conformable with D, where k = 1,
. . . , K andUUUkUUU′

k = In =⇒UUUks rotate the impact matrix, DUUUk, K ways.

4. Construct K IRFs initialized by DUUUk, but if an IRF violates a sign restriction
toss out this draw of IRFs.

5. Adjust K to obtain the desired number of IRFs, which satisfy the sign
restrictions and report error bands.
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Sign Restrictions: Preliminary Summary

▶ Sign restrictions involve several under discussed issues.

▶ Sign restrictions generate posterior sets of IRFs not point valued
posterior distributions.

▶ Sign restrictions represent the beliefs or priors of the analyst
estimating the SVAR.

▶ Sign restrictions impose nonlinear restrictions on the impact, A0,
and slope coefficients, Ajs, of a SVAR.

▶ The nonlinear restrictions are left unknown by the analyst.

▶ Hence, the implications of the sign restrictions for the economic
interpretation of the SVAR are hidden from view.
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Sign Restrictions: Inoue and Kilian (2013)

▶ Sign restrictions are popular in the SVAR literature, but have several problems.

1. The inference problem is sign restrictions are set defined rather than being
restricted to a point as are zero (or hard) restrictions.

2. Inoue and Kilian (JofE, 2013) argue the way to conduct this inference is to find
the SVAR that generates the highest posterior density (HPD) of A0 and AAA.

▶ Define the HPD set
{
ĨRFi,j

(
0 : H

)
∈ IRFIRFIRFi,j

(
0 : H

)
: g
(
ĨRFi,j

(
0 : H

))
≥ xi%

}
=⇒ measures the posterior uncertainty of ĨRFi,j

(
0 : H

)
∈ IRFIRFIRFi,j

(
0 : H

)
.

1. Estimate the unrestricted BVAR conditional on the normal conjugate prior

generating the posteriors BBB
∣∣∣ΩΩΩ, YYY ∼ N

(
BBB
∣∣∣ΩΩΩ⊗ZZZ

)
and ΩΩΩ−1

∣∣∣YYY ∼ W(
SSS
−1, ννν

)
.

2. Draw from the posteriors and form a space of n×n orthonormal matricesUUU,
UUUUUU′ = In using a uniform distribution K times.

3. Apply eachUUUk, k = 1, . . . , K, to rotate D =⇒ compute ĨRFi,j
(
0 : H

)
starting

from DUUU and if IRFi,j
(
ℓ, ℓ + s

)
µ ≥ 0 keep this draw, otherwise toss it.

4. Steps 3 and 4 are repeated M times that ends with sorting the IRFs in

descending order using g
(
ĨRFi,j

(
0 : H

))
to form IRFIRFIRFi,j

(
0 : H

)
.

5. The first 1−α elements of g
(
ĨRFi,j

(
0 : H

))
form the HPD =⇒ use these

IRFi,j
(
0 : H

)
to construct posterior credible sets that are used to conduct

inference on the SVAR identified by sign restrictions.
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Sign Restrictions: Giacomini and Kitagawa (2018)

▶ There are two issues not often confronted when conducting inference
on SVARs identified by sign restrictions.

1. The information content of the prior dominates inference asymptotically
=⇒ the prior is never updated in the posterior, and

2. the information content of the priors dominate =⇒ Bayesian credible sets
are always covered by truth.

▶ Giacomini and Kitagawa (2018) propose a “robust” Bayes approach
to assess SVARs endowed with sign restrictions.

1. Robust Bayes places a prior on the reduced-form VAR parameters not
the elements of the structural IRFs.

2. Sign restrictions are constraints on the reduced-form VAR parameters.
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Sign Restrictions: Giacomini and Kitagawa (2018), cont.

▶ Follow usual practice and impose a single prior on the reduced-form VAR
parameters, but

1. invoke a class of “arbitrary” priors for the structural parameters =⇒UUU.

2. Use Bayes rule to update or mix priors overUUU, which robustifies inference
of the sign restricted SVAR.

3. This procedure generates posterior mean bounds on the set, which GK
“interpret as an estimator of the identified set” =⇒ a robust measure of the
posterior uncertainty surrounding the identified set.

▶ A robust prior over all potential rotations ofUUUa data are uninformative w/r/tUUU.

1. The analyst has uninformative or ambiguous beliefs about which priors are
most “credible” in terms of the posterior of the SVAR =⇒ no prior information
about the sign restrictions, which impose nonlinear restrictions on A0 and AAA.

2. YYY are only informative about the reduced form VAR =⇒ BBB
∣∣ΩΩΩ, YYY and ΩΩΩ−1

∣∣YYY.

3. Assess sign restrictions on IRFs across the priors onUUU =⇒ varyingUUU generates
information about the impact of the sign restrictions on the likelihood of the
SVAR =⇒ robustify or produce more efficient uncertainty intervals for the IRFs.
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Sign Restrictions: Arias, Rubio-Ramírez, and Waggoner (2018)

▶ Arias, Rubio-Ramírez, and Waggoner (2018) construct three algorithms
to estimate SVARs identified, at least, in part by sign restrictions.

▶ Two algorithms produce posteriors of SVARs that have sign restrictions
and hard or zero short-run restrictions on A0.

▶ As is standard, a uniform prior is given toUUU by Arias, Rubio-Ramírez,
and Waggoner (ARRW).

▶ The algorithms also use the normal-inverse Wishart density as the prior
on the reduced-form VAR parameters.

▶ ARRW prove the uniform-normal-inverse Wishart (UNIW) prior yields a
posterior (that they call) the normal-generalized-normal density.

1. Normal-generalized-normal (MGN) posterior is conjugate to the UNIW prior.
2. The generalized-normal distribution adds a shape parameter that can yield

either fat tails or skew to the posterior.

▶ Algorithm 1 of ARRW is the canonical sampler of sign restricted SVARs
=⇒ show posterior is drawn from the NGN density.
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Sign Restrictions: Arias, Rubio-Ramírez, and Waggoner (2018), cont.

▶ Algorithm 2 adapts Algorithm 1 to handle the point restrictions by placing linear
restrictions on the columns ofUUU.

▶ The problem is the sign and linear restrictions are only satisfied by the reduced-form
VAR parameters andUUU.

▶ There are no structural parameters (i.e., A0 and Ajs) that are consistent with the sign
and hard restrictions.

1. An implication is the posterior of a SVAR with sign and point restrictions does
not exist (except on sets of measure zero).

2. Algorithm 2 is not a valid procedure to generate the posterior of the SVAR.

▶ ARRW propose to solve the problem by including importance sampling (IS) with
replacement steps in Algorithm 2, which is their Algorithm 3.

1. The importance sampler is necessary because the likelihood of the SVAR
with respect to A0 and Ajs is not analytic.

2. IS weights equal zero if A0 and Aj do not satisfy the sign and point restrictions.
3. Otherwise, the importance sampling weights are the ratio of the

∣∣det
(
A0
)∣∣

to the pdf of the importance density draw of A0 and Ajs.
4. Algorithm 3 needs to make (many) more IS draws (i.e. effective sample size)

than the desired number of draws of A0 and Aj to be valid.
5. The resampling step produces unweighted and independent draws that are

needed for the posterior to give Bayesian credible sets.
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Introduction

▶ Frequentist structural VAR estimators can always be interpreted as an
instrumental variables (IV) problem.

▶ An early example of a SVAR estimated by IV is Shapiro and Watson
(1988, “Sources of business cycle fluctuations,” in Fisher, S. (ed.),
NBER Macroeconomic Annual, Cambridge, MA: MIT Press).

▶ There are many papers interpreting SVARs as IV estimators.
1. Long-run restrictions: Pagan (1994, “Introduction, Calibration and econometric

Research: An overview,” Journal of Applied Econometrics 9, S1–S10), Sarte
(1997, “On the identification of structural vector autoregressions,” Economic
Quarterly, Federal Reserve Bank of Richmond 83(3), 45–67), and King and
Watson (1997, “Testing long-run neutrality,” Economic Quarterly, Federal
Reserve Bank of Richmond 83(3), 69–101).

2. Short-run restrictions: Sarte (1997), King and Watson (1997), and Pagan and
Robertson (1998).

▶ The label “Proxy VARs” is a way to rebrand SVARs estimated by IV.
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An Example of a Proxy VAR

▶ Ramey (2016, pp. 79–80) suggests proxy VARs are identified using
external information (i.e., instruments).

▶ As an example, consider estimating a SVAR to obtain the responses
of y1,t to y2,t and y3,t .

▶ IV teaches that if there is a variable, xt , “external” to the SVAR that is
correlated with y1,t and not y2,t and y3,t , xt is a valid instrument.

1. Estimate the reduced form VAR and save the residuals ε1,t , ε2,t , and ε3,t .

2. Rank condition requires E
{
xtε1,t

}
= ϑ ≠ 0 and E

{
xtε2,t

}
= E

{
xtε3,t

}
= 0

for xt to be a valid instrument. (Since the example is just-identified, the
order condition is satisfied.)

3. The first-step regressions are ε2,t on ε1,t and ε3,t on ε1,t employing xt as
the instrument in both cases, where the residuals are labeled ν2,t and ν3,t .

4. A second-step regress ε1,t on ε2,t and ε3,t using ν2,t and ν3,t as instruments.

5. External instruments often pose as dummy variables =⇒ subjective readings of
the history of shifts in fiscal or monetary policy, as in Romer and Romer (1994,
“Monetary policy matters,” Journal of Monetary Economics 34, 75–88), but
whether “narrative” variables are legitimate instruments is questioned by
Leeper (1997, “Narrative and VAR approaches to monetary policy: Common
identification problems,” Journal of Monetary Economics 40, 641–657).
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IV and Weak Instruments
▶ Weak instruments create problems when applying IV to aggregate and financial data.

▶ The problem is the correlation(s) of the instrument(s) and the variable needing an
instrument is small, or

∣∣E{xtε1,t
}∣∣≪ ϵ, where ϵ is some small positive number.

1. This is not a small sample problem, but a problem in population!!!
2. The first modern treatments of weak instruments are Nelson and Startz (1990,

“Some further results on the exact small sample properties of the instrumental
variable estimator,” Econometrica 58, 967–976) and (1990, “The distribution of
the instrumental variables estimator and its t -ratio when the instrument is a
poor one,” Journal of Business 63, S125–S140); also see Stock, Wright, and Yogo
(2002, “A Survey of Weak Instruments and Weak Identification in Generalized
Method of Moments,” Journal of Business & Economic Statistics 20, 518–529)
and Andrews, Stock, and Sun (2019, “Weak instruments in IV regression:
Theory and practice,” Annual Review of Economics 11, 727–753).

▶ Nelson and Startz show the weak instrument problem appears as
1. asymptotic bias in the IV estimator that approaches OLS in the limit.
2. Load more and more weak instruments in Xt =⇒ IV estimator collapses to OLS.
3. The asymptotic distribution of the IV estimator is bimodal =⇒ the probability is

zero that the estimator falls between the modes of the two peaks, which
4. implies a large asymptotic variance in the IV estimator yields empty confidence

intervals because the region of zero probability cannot be ruled out,
5. and the quality of the asymptotic distribution of the IV estimator is sensitive to

sample size and the constraints placed on the rank condition.
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Weak Instrument-Robust Proxy VARs

▶ Proxy VARs face a non-standard inference problem when there are weak
instruments =⇒ ϑ is within an ϵ-neighborhood of zero.

▶ Assume the first element of the structural shock vector ηt needs an external
instrument for identification.

1. Since the mapping from the reduced-from innovations to the structural shocks

is εt = ΩΩΩ−0.5ηt , the rank condition is E
{
εtX′

t
}
= E

{ΩΩΩ−0.5ηtX′
t
}
= ϑΩΩΩ−0.5

1 , where

ΩΩΩ−0.5
1 is the first column of the inverse of the Cholesky decomposition of ΩΩΩ.

2. Given
∣∣ϑ∣∣ < ϵ, Olea, Stock, and Watson (2018) show the IRFs are asymptotically

the same applying a recursive ordering toΩΩΩ =⇒ estimate the reduced-form VAR
by OLS and apply a Cholesky decomposition to ΩΩΩ.
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Weak Instrument-Robust Proxy VARs, cont.

▶ Olea, Stock, and Watson (2018) propose a solution to the inference problem
of proxy VARs affected by weak instruments.

▶ The solution relies on tests developed in two classic papers.
1. A test of the equality of the means of two variables (or distributions) that are

measured in different units is in Fieller (1944, “A Fundamental formula in the
statistics of biological assay, and some applications,” Quarterly Journal of
Pharmacy and Pharmacology 17, 117–123).

2. A test that ϑ = ϑ0 is constructed by Anderson and Rubin (1949, “Estimation of
the parameters of a single equation in a complete system of stochastic
equations,” The Annals of Mathematical Statistics 20, 46–63).

▶ The Fieller (1944) test is applied to the means of the unrestricted MA
(
k
)

and the impact restriction at ϑ = ϑ0 =⇒ the IRF of interest.

▶ The difference of these means is used by Olea, Stock, and Watson to form
1. a Wald test using elements of ΩΩΩ that is inverted to construct
2. a Anderson and Rubin (1949) confidence set for the IRFs that
3. is robust to weak instruments over a sequence of ϑ0s.
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How and Why Does a Proxy VAR Identify Shocks?

▶ Proxy VARs were introduced to avoid the problem that the reduced-form VAR
lag polynomial is not invertible =⇒ violate the Wold decomposition theorem.

1. The VAR is not fundamental =⇒ cannot recover fundamental shocks from
the data and the converse.

2. Overcome lack of fundamentalness because the external instruments identify
3. the structural responses without having to recover the structural shocks from

fundamental reduced-form innovations.

▶ Stock and Watson (2018) discuss that identification of proxy VARs rest on more
assumptions than are often stated.

1. Besides the rank condition, E
{
ε1,tX′

t
}
= ϑ ≠ 0, and instrument exogeneity,

E
{
εi≠1,tX′

t
}
= 0, where εi≠1,t are reduced-form innovations that are not ε1,t ,

2. instruments are uncorrelated at all leads and lags with all the elements of εt ,
E
{
εt+ℓX

′
t
}
= 0, ℓ ≠ 0 =⇒ Xt is unpredictability projected on the history of εt .

3. The exogeneity of instruments at all leads and lags is necessary because
identification is about the impact responses of Yt w/r/t ε1,t .

4. Key restrictions on the lags not the leads =⇒ otherwise invertibility matters.

5. If the assumption is violated, need to identify impact and lags responses of Yt
to the history of ε1,t .
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Proxy VARs are (almost) SVARs

▶ Suppose the lead-lag exogeneity assumption is violated for some subset of the lags
of the reduced-form VAR, E

{
εt−sX′

t
}
≠ 0, s = 1, . . . , k < p.

▶ Stock and Watson (2018) show that “control” variables can restore exogeneity.

1. Project Xt onto a vector of control variables, Zt , and uX,t = Xt − E
{
Xt
∣∣∣Zt}

2. to purge Xt of the correlation with εt−s , s = 1, . . . , k, where the linear VAR
yields conditional expectations equivalent to the projections operator.

▶ Where to find control variables? Stock and Watson (2018) suggest

1. leading candidates are lags of Yt , Zt =
[
Y′t−1 . . .Y′t−k

]′
.

2. Equivalent to adding Xt to the reduced-form VAR (almost).

3. Xt is regressed on a restricted subset of lags of Yt and no own lags.

4. This approach is more restrictive than proxy VARs =⇒ need to satisfy
the invertibility of the VAR.

5. Will be more efficient than proxy VARs, given the instruments are not
weak =⇒ one-step estimation instead of a two-step IV estimator.
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Proxy VARs can be Sign Restricted

▶ Another issue is proxy VARs produce can produce set identified IRFs; for example,
see Antolín-Díaz and Rubio-Ramírez (2018, “Narrative Sign Restrictions for SVARs,”
American Economic Review 108, 2802–2829).

▶ Combining narrative identification with sign restrictions restricts, say, a QE policy
episode to produce impact and h-step ahead positive responses.

▶ There at least two problems that a sign restricted-proxy VAR estimator has to
address, according to Giacomini, Kitagawa, and Read (2021, “Identification and
inference under narrative restrictions,” manuscript, Department of Economics,
University College London).

1. Priors on the reduced-form VAR are not updated under narrative-sign
restrictions =⇒ its likelihood is flat given the restrictions set by the
orthonormal rotation matrix.

2. This matrix controls the probability the narrative-sign restrictions are true.

3. Bayesian inference often rests on the priors of the narrative-sign restrictions.

4. =⇒ Prior yields a SVAR with a flat likelihood in the direction of the restrictions.

5. This is the Baumeister and Hamilton (2015) result that the posterior of the
SVAR is proportional to the prior of the sign restrictions.

▶ Giacomini, Kitagawa, and Read (2021) propose Bayesian methods to solve the
problems of estimating and evaluating sign restricted-Proxy VARs.
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Fundamentalness and Misspecification of SVARs

Introduction

▶ Identification of a SVAR is about its properties in population.

1. These are the “algebraic” properties of the SVAR, which are the restrictions
imposed on the unrestricted VAR.

2. Do not confuse identification with the small sample properties of an estimator
3. This is true for identifying any and all econometric models.

▶ Identification of SVARs is more than counting the number of restrictions.

1. The K- and C-models have 0.5n
(
n− 1

)
free parameters while there are

0.5n
(
3n− 1

)
free parameters in the AB-model.

2. Have to restrict at least this many elements in A0 (and Q for the AB-model) to
achieve just-identification =⇒ this is the order condition, which should be
familiar from GMM and IV estimators in general; see Rothenberg (1971,
“Identification in parametric models,” Econometrica 39, 577–591).

▶ There is more to identifying SVARs than checking the order condition.

1. The order condition is only necessary. Are there sufficient conditions that yield
global identification? What are the implications of local identification?

2. Are identified shocks of a SVAR represent fundamental economic disturbances
impinging on an economy?

3. Are the short- and long-run restrictions identifying a SVAR robust? =⇒ Does a
small perturbation to these restrictions generate large changes in a SVAR’s
predictions (i.e., IRFs, FEVDs, and the historical error decomposition).
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Fundamentalness and Misspecification of SVARs

Identification of SVARs, I

▶ Rubio-Ramírez, Waggoner, and Zha (REStud, 2010) provide necessary and sufficient
conditions to identify locally and globally recursive and non-recursive just- and
over-identified K-model SVARs.

1. Study identification of SR restrictions on A0 or restrictions on IRFs.
2. Observational equivalence: Given A0, AAA, and YYY, no combination of A‡0 and AAA‡

gives YYY the same distribution (i.e., likelihood of SVAR)⇒ A0 = A‡0P and AAA = AAA‡P,
where P is an orthogonal matrix, P′P = PP′ = I ⇒ P′ = P−1 (det

(
P
)
= 1 or −1).

3. Local identification: A0 and AAA are locally identified iff no other SVARs exist in
an open neighborhood around (A0, AAA) that are observationally equivalent.

4. Global identification: A0 and AAA are globally identified iff there are no other
SVAR coefficients that are observationally equivalent.

▶ Necessary condition: The number of identifying restrictions ≥ free parameters
=⇒ order condition of Rothenberg (Econometrica, 1971).

1. If identifying restrictions = free parameters, SVAR is just-identified.
2. SVAR is over-identified when the inequality is strong.

▶ Sufficient condition: SVAR restrictions are embedded in a sequence of matrices with
rank = n−j =⇒ dim

(
Yt
)

net of the location of a structural shock =⇒ rank condition.

▶ Although ordering Yt is arbitrary, the necessary and sufficient conditions imply the
ordering is “unique” for the identifying restrictions (almost everywhere).
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Fundamentalness and Misspecification of SVARs

Identification of SVARs, II

▶ IV estimators require every instrument to be correlated with the right hand
side variables =⇒ relevance condition analogous to RRWZ’s rank condition.

▶ RRWZ’s sufficient condition for global identification of a SVAR is satisfied
when there is a measurable response by the n elements of Yt to the j+1st
structural shock in ηt given this holds for jth shock, j = 1, . . . , n.

▶ These responses place restrictions on A0 of the form RjA
′
0ιj = 0, where Rj

is a n×n matrix and ιj is a n×1 vector with a one in its jth position and
zeros otherwise =⇒ Rj contains linear restrictions on the columns of A′0
w/r/t ηj,t and ιj picks off these responses.

▶ Form Mj by stacking RjA
′
0 on top of

[
Ij×j 0j×(n−j)

]
, j = 1, . . . , n.

▶ Global identification of a SVAR rests on
1. necessary condition,

∑n
j=1 rj ≥ number of free parameters, 0.5n

(
n− 1

)
,

where rank
(
Rj
)
= rj , =⇒ number of restrictions embedded in Rj .

2. and the rank
(
Mj

)
= n for j = 1, . . . , n =⇒ sufficient conditions.

3. The sequence of r1 ≥ r2 ≥ . . . ≥ rn is available because the ordering
of Yt is arbitrary under linear restrictions.
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An Example of a SVAR Identified on SR Restrictions

▶ Suppose a SVAR is estimated on Yt =
[∆yt ∆πt (rt −πt)]′ using a short-run

recursive identification on A0 =

 a11 0 0

a21 a22 0

a31 a32 a33

.

▶ Since dim(Yt) = 3, there are 0.5
(
n2 −n

)
= 3 short-run restrictions =⇒ will satisfy the

order condition for identification with the upper triangle of A0 full of zeros.

▶ The sufficient conditions involve the linear restrictions RjA
′
0.

1. which appear in R1 =

 0 1 0

0 0 1

0 0 0

, R2 =

 0 0 1

0 0 0

0 0 0

, and R3 = 03×3.

2. =⇒ M1 =


0 1 0

0 0 1

0 0 0

1 0 0

, M2 =



0 0 1

0 0 0

0 0 0

1 0 0

0 1 0

, and M3 =
[

03×3

I3

]
.
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Necessary and Sufficient Conditions to Identify a SVAR on SR Restrictions

▶ The rank
(
R1
)
= 2, rank

(
R2
)
= 1, rank

(
R3
)
= 0 =⇒ rank

(
R1
)
> rank

(
R2
)
> rank

(
R3
)
,

which satisfies the order condition.

▶ Sufficient condition is satisfied because rank
(
M1
)
= rank

(
M2
)
= rank

(
M3
)
= 3.

▶ Do the results change for A0 =

 a11 0 0

0 a22 a23

a31 a32 a33

?

▶ In this case, R1 =

 0 1 0

0 0 1

0 0 0

, R2 =

 1 0 0

0 0 0

0 0 0

, and R3 = 03×3, which gives

M1 =


0 1 0

0 0 1

0 0 0

1 0 0

, M2 =



1 0 0

0 0 0

0 0 0

1 0 0

0 1 0

, and M3 =
[

03×3

I3

]
.

▶ Third column of M2 full of zeros =⇒ rank
(
M2
)
= 2 and SVAR is not globally identified.
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Identification of SVARs, III

▶ RRWZ’s necessary and sufficient conditions for global identification are
germane for linear restrictions on AAA, (i.e., lagged SVAR coefficients) and
nonlinear restrictions on IRFs =⇒ long-run restrictions.

▶ Linear restrictions are imposed on A0 and AAA by RjAAAιj = 0, whereAAA stacks
A′0 on top of AAA′ =⇒ form the Mjs and check the necessary and sufficient
conditions for global identification.

▶ Linear restrictions on IRFs are nonlinear restrictions on A0 and AAA.

1. Define IRF∞ ≡
[
A0 −

∑p
ℓ=1 Aℓ

]−1
and IRF1:n,1:n

(
h
)
≡
[
Fh
]

1:n,1:n
.

2. =⇒ Rj can place linear restrictions on a IRF∞ (i.e., LR identifying
restrictions), IRF1:n,1:n

(
h
)

(i.e., identifying restrictions at forecast
horizon h), a matrix that stacks A0 on top of IRF∞ or stacking
IRF1:n,1:n

(
h
)

beneath A0 =⇒ can mix SR, medium-run, and LR
identifying restrictions.

3. Ask if the resulting Mj matrices satisfy the RRWZ necessary
and sufficient conditions.

▶ Check necessary and sufficient conditions before estimating a SVAR.
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Identification of SVARs, IV: RRWZ’s Other Results

▶ Partial identification: SVARs are often used to recover only the IRFs of Yt to ηj,t
=⇒ responses to an identified monetary policy shock.

1. Global identification of only one structural shock or a subset of shocks.
2. =⇒ “A subset of equations is identified if each equation in the subset is

identified.” (RRWZ, p. 674)

▶ Exact identification: RRWZ’s rank condition is necessary and sufficient for global
identification of just-identified SVARs iff

1. the weak inequality restrictions on the number of identifying restrictions in Rj ,
r1 ≥ r2 ≥ . . . ≥ rn, become

2. strong inequality restrictions, r1 > r2 > . . . > rn, where rj = n−j, which satisfies
Rothenberg’s order condition =⇒ previous recursive just-identified example.

▶ Local identification: Suppose A0 =
 a11,0 0 a13,0

a21,0 a22,0 0
0 a32,0 a33,0

 =⇒ r1 = r2 = r3 = 1.

1. =⇒ Satisfies Rothenberg’s order condition 0.5n
(
n− 1

)
= 3.

2. Let a11,0 = a22,0 = a33,0 = 1 and a13,0 = a21,0 = a32,0 = 2, which is equivalent to
ã11,0 = ã22,0 = ã33,0 = 2 and ã13,0 = ã21,0 = ã32,0 = 1

=⇒ A0 = PÃ0, where P =
 2

/
3 2

/
3 −1

/
3

−1
/
3 2

/
3 2

/
3

2
/
3 −1

/
3 2

/
3

.

3. A0 is locally identified, but not globally.
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SVARs and Long Run Identification: The Problems

▶ The BQ decomposition relies on assumptions that are not innocuous.

1. Assume estimation of long run economic relationships is possible
=⇒ as j -→ ∞, estimate EtYt+j precisely on a finite span of data.

2. The LR identification is assumed to separate transitory shocks from
permanent shocks =⇒ the lack of infinitely long samples suggests the
potential for the BQ decomposition to confound the LRN hypothesis.

▶ Blanchard and Quah (AER, 1989) have a theorem giving necessary and
sufficient conditions under which a bivariate AR (n = 2) identifies the
correct responses to a permanent shock and a transitory shock when
truth is that there are several of these shocks.

▶ Faust and Leeper (JBES, 1997) extend BQ’s theorem to account for

1. uncertainty surrounding estimates of C
(
1
)

and hypothesis tests of ΓΓΓ(1)i,j = 0 and
2. temporal and cross-section aggregation of data.
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SVARs and Long Run Identification: Faust and Leeper (JBES, 1997)

▶ Faust and Leeper include several propositions that provide a framework for
analyzing the BQ decomposition.

▶ Proposition 1: The hypothesis ΓΓΓ(1)i,j = 0 has no power (i.e., type II error)
=⇒ if the size of the test (i.e., type I error) is x%, the power is ≤ x%.

1. When LRN is false, its rejection rate ≤ x% =⇒ the test has no power.

2. This is frequentist analysis, but it indicates that in small sample the potential
for biased inference is severe =⇒ C

(
1
)

is estimated imprecisely, which suggests
SVAR identified by LR restrictions need priors that reflect this uncertainty.

▶ Proposition 2: Restricts analysis to bivariate ARs, but there are more than
n = 2 fundamental shocks.

1. Truth is Yt =
∑∞
ℓ=1 C̃ℓ ε̃t , where Yt is n×1, C̃ℓ is n×ñ, and ε̃t is ñ×1.

2. Researcher estimates Yt =
∑∞
ℓ=1 Cℓεt , where Cℓ is n×n, and εt is n×1.

3. These VMA(∞) =⇒
∑∞
ℓ=1 C̃ℓ =

∑∞
ℓ=1 CℓWℓ , where Wℓ is n×ñ.

4. =⇒ Wℓ has to be block diagonal to separate transitory and permanent
shocks (given ΓΓΓ (1) is lower triangular).

5. =⇒ The transitory components of ε̃t from a linear combination that is
the transitory component of εt and same for the permanent shocks.
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Sign Restrictions and Identification of SVARs

▶ Signs restrictions give potential inferences on a SVAR, but do not identify the SVAR.
“an assumption about signs is not enough by itself to identify structural param-
eters . . . procedure . . . delivers is a set of possible inferences, each of which is
equally consistent with both the observed data and the underlying restrictions,”
Baumeister and Hamilton (Econometrica, 2015, p. 1963).

▶ Baumeister and Hamilton argue the standard approach to estimating sign restricted
SVARs is Bayesian, Giacomini and Kitagawa (2018) make similar arguments, but
analysts often do not state their priors.

▶ Well known standard methods for estimating SVARs on sign restrictions are only
consistent with the Haar prior; see Rubio-Ramírez, Waggoner, and Zha (REStud, 2010)

1. Haar prior: Related to the Haar measure that “assigns an ‘invariant volume’
to subsets of locally compact topological groups, consequently defining an
integral for functions on those groups.”

2. Loosely, the idea is that the measure of a closed set of functions cannot be
changed as more functions are added.

3. An example is the Jeffreys prior, which is non-informative and proportional
to the square root of determinant of Fisher’s information (i.e., the covariance
matrix of the IRFs implied by the sign restrictions).

▶ The problem is the Haar prior can lead to posteriors that are identical to the prior
unless subjective beliefs are included in the prior.
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Sign Restrictions, Priors, and Posteriors

▶ Focus is on AB-class SVARs in Baumeister and Hamilton conditional on the true
covariance matrix, ΩΩΩ.

▶ Baumeister and Hamilton show asymptotically A0 and Q reside in a set defined by ΩΩΩ
with probability -→ 1.

1. The posterior of the SVAR is in this set, but the posterior of A0 is proportional
to g

(aaa0
)
, where g

(aaa0
)

is the prior on A0 and the constant of proportionality
normalizies g

(aaa0
∣∣YYY), which is the posterior of A0 conditional only on the data.

2. The standard method of estimating SVARs on sign restrictions yields a
posterior that is (dominated by) the prior.

▶ The Haar prior has odd effects on the implicit priors of the SVAR.

1. dim
(
Yt
)

affects location of structural shocks in the implicit prior distribution.
2. In many cases, implicit priors on aaa0 are Cauchy =⇒ prior on a (log) probability.

▶ The standard method for generating IRFs under sign restrictions reflect the set
valued prior, not the data, and not the ordering.

▶ Baumeister and Hamilton suggest mixing sign restrictions with priors on the impact,
slope, and volatility coefficients of a SVAR =⇒ Sims and Zha prior along with priors
as dummy observations.
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Fundamentals, Misspecification, and Identification of SVARs

▶ A critique of SVARs is that linearized DSGE models do not predict VARs
with finite lags except in a few special cases.

▶ Instead, the reduced form of linearized DSGE models predict vector
autoregressive-moving averages =⇒ VARMA(p, q) models.

▶ There is a claim that this invalidates using SVARs to study business cycle
fluctuations and conducting policy evaluation =⇒ SVARs do not recover
fundamental shocks, which are found in DSGE models.

▶ This critique of SVAR identification conflates several disparate issues.
1. Is the claim that SVARs can never recover fundamental shocks?

2. Is the claim that SVARs estimators fail to control for expectation formation
by economic agents, which produce biased estimates of fundamental shocks?

3. Or is it SVAR specifications are fragile =⇒ change the elements of Yt and
alter the identification of the SVAR.
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Fundamentals and SVARs
▶ Lippi and Reichlin (JofE, 1994) combine two seemingly unrelated ideas.

1. The reduced form of a linearized DSGE model is a VARMA(p, q).
2. VARMA(p, q)s often are associated with VMA(∞)s that are not fundamental.

▶ Let Yt = C
(
L
)
εt , where the matrix polynomial C

(
L
)
=
∑∞
j=0 Cj , C0 = I,

εt ∼N
(
0,Ω), and C

(
L
)

has roots with modulus on or outside the unit circle.
1. εt is fundamental iff C

(
L
)

has roots with modulus outside the unit circle.
2. =⇒ the history Yt−j , j = 0, 1, 2, . . . , recovers εt =⇒ these shocks reside

in a linear space spanned by the history of Yt .
3. Otherwise, C

(
L
)

has roots with modulus on the unit circle =⇒ εt is not
fundamental.

▶ Fundamentalness of a MA(1): Consider xt = et − αet−1, et ∼ iidN
(
0, σ2

e
)
.

1. Suppose α ≥ 1 =⇒ α can be estimated using MLE, but et cannot be recovered
from the history of xt =⇒ et is not a fundamental shock for xt .

2. xt is forward-looking in et =⇒
(
1−αL

)
=
(

1
α

L−1 − 1
)
αL = −

(
1− 1

α
L−1

)
αL

=⇒
(

1− 1
α

L−1
)−1

xt = αet−1 if α ≥ 1.

3. Define σ2
u = α2σ2

e =⇒ the MA(1) becomes xt = ut −
1
α

ut−1 =⇒ 1
/
α is a

“discount factor” on lags of xt =
∑∞
j=1 α−jxt−j + ut =⇒ xt is backward-looking

in ut and ut is fundamental for xt .
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Lippi and Reichlin: Fundamentals, DSGE Models, and SVARs

▶ Linearized DSGE models predict ΘΘΘ(L)Yt = ΨΨΨ(L)ηt , where ΘΘΘ, ΨΨΨ , and ηt are
1. finite-order matrix lag polynomials that are nonlinear functions of the

DSGE model parameters and structural shocks with unit variances.
2. The roots of ΘΘΘ and ΨΨΨ have modulus on or outside the unit circle.
3. An econometrician’s problem is that ηt is known only to the agents

populating the DSGE model.

▶ An econometrician only observes Yt and its history.

1. =⇒ no a priori reasons for the fundamentalness of Yt = ΘΘΘ(L)−1ΨΨΨ(L)ηt .
2. =⇒ DSGE theory does not give necessary and/or sufficient conditions

that predict ΘΘΘ(L) has roots strictly outside the unit circle.
3. =⇒ ηt is not fundamental for Yt .

▶ Consider
[
A0 −A

(
L
)]
Yt = ηt , where Yt ∼ I

(
1
)

and ηt ∼ iidN
(
0, I

)
.

1. The SVMA(∞) is Yt =
[
I−A−1

0 A
(
L
)]−1

A−1
0 ηt , which exists iff[

I−A−1
0 A

(
L
)]−1

A−1
0 has roots outside the unit circle.

2. Since the SVAR is the economic model, an econometrician observes the same
information as the economic agents implied by the SVAR.

3. An implication of SVARs that is stronger than the standard RE assumption
implicit in DSGE models.

4. Claim: The SVAR is an approximation to a VARMA, which is the reduced-form
of a DSGE model.
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Lippi and Reichlin: Fundamentalness and Blaschke Factors
▶ Consider Yt = S

(
L
)
νt , which is not fundamental.

1. The space generated by the history of νt is not known to the econometrician.
2. =⇒ νt are not forecast errors, but Yt = C

(
L
)
εt = S

(
L
)
νt .

▶ There is a mapping which creates a fundamental VMA(∞) using S
(
L
)
.

1. The mapping relies on the Blaschke matrix, M
(
L
)
, which has no poles

(i.e., roots or eigenvalues) in and on the complex unit circle and

M
(
z
)−1 = M∗(z−1

)
, where M∗(·) is the conjugate transpose of M

(
·
)
.

2. A leading example of a Blaschke matrix is M
(
z
)
=
 z−α

1−αz
0

0 I

,

where α ∈
(
−1, 1

)
and α is its complex conjugate.

3. A useful result is that νt = M
(
L
)−1εt =⇒ given εt ∼ WN , νt is as well.

4. The upper left block of M∗(L−1
)

is
L−1 −α

1−αL−1 =
1−αL

1−αL−1 L−1 =⇒ νt is

backward-looking in and fundamental for εt .
5. Theorem 2: S

(
L
)
= C

(
L
)
M
(
L
)
=⇒ Yt = C

(
L
)
M
(
L
)
νt or C

(
L
)−1Yt = M

(
L
)
νt

=⇒ to recover νt need the history of Yt and its future.

6. However, Yt = S
(
L
)
νt = S

(
L
)
M
(
L
)−1

M
(
L
)
νt = C

(
L
)
εt =⇒ obtain an “estimate”

of α to recover the fundamental VAR representation from S
(
L
)
.

7. Given M
(
L
)
, compute Ĉ

(
L
)

and ε̂t using Ŝ
(
L
)

and ν̂t , which solves the MA
invertibility problem by discounting future νt by α.
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Fundamentalness and VARs
▶ Lippi and Reichlin locate the problem of non-fundamentalness of VARs in the

non-invertible MA component of underlying VARMA.

▶ News or anticipated shocks are a source of non-fundamentalness in VARs
=⇒ create non-invertible MA processes.

1. Examples are news about technology innovations, lags in legislation that
change fiscal policy, and forward guidance statements about monetary policy.

2. See Barsky and Sims (2011. “News shocks and business cycles,” Journal of
Monetary Economics 58, 273–289) and Mertens and Ravn (2010, “Measuring the
impact of fiscal policy in the face of anticipation: A structural VAR approach,”
The Economic Journal 120, 393–413).

▶ Leeper, Walker and Yang (2013) show non-fundamentalness is tied to anticipated
shocks is a symptom of the structure that transmits this “news” into the economy.

1. Blaschke matrices are a tool to model the information flow of anticipated
shocks, (i.e., the νts), which are non-fundamental and is the source of the MA
non-invertibility.

2. They show that adding variables to Yt which contain information about news
shocks can in some cases negate the problem of non-fundamentalness.

3. Also see Lütkepohl (2012, “Fundamental problems with nonfundamental
shocks,” Discussion Paper 1230, DIW-German Institute for Economic Research,
Berlin, Germany).

▶ This suggests another source of non-fundamentalness in VARs is model
misspecification w/r/t to which elements of Yt should be included and excluded.
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Fundamentalness and The ABCs and Ds of VARs

▶ DSGE models provide information about the variables to include Yt
=⇒ defines the shocks the SVAR meant to recover.

▶ This restricts the VAR in several ways.
1. The dim

(
Yt
)
= the number of shocks driving the DSGE model.

2. If this is true, the MA invertibility problem may still exist.
3. However, DSGE models often contain dynamic predictions

about more variables than there are structural shocks.
4. This suggests there are combinations of variables defining a Yt

that yield fundamental VARs and others that do not.
5. Some specifications of Yt have VAR dynamics that are fundamental,

but this is not true for all Yt =⇒ omitted variables problem.

▶ Fernández-Villaverde, Rubio-Ramírez, Sargent, and Watson (2007) develop
an invertibility condition for the reduced form VAR of a linearized DSGE
model that is conditional on Yt =⇒ a necessary condition for a VAR
specification to be fundamental.
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The State Space of a Linearized DSGE model and a VAR(∞)(∞)(∞), I

▶ The solution of many linearized DSGE models has the state space representation

System of State Equations: St+1 = AAASt + BBBηt
System of Observation Equations: Yt = CCCSt + DDDηt

where St is a m × 1 (n ≤m) vector of endogenous and exogenous state variables
some of which are unobserved and ηt ∼ N

(
0n×1, In

)
.

▶ The system of observation equations imply ηt =DDD−1
(
Yt −CCCSt

)
, givenDDD is full rank.

▶ Use the expression to substitute for ηt in the system of state equations to find

St+1 =
(
AAA−BBBDDD−1CCC

)
St + BBBDDD−1Yt or St+1 =

∑∞
j=0

(
AAA−BBBDDD−1CCC

)jBBBDDD−1Yt−j .
1. As long as

[
I−
(
AAA−BBBDDD−1CCC

)
L
]

is invertible =⇒ has roots with modulus outside
the unit circle, recover St+1 from the history of Yt .

2. =⇒ “Poor man’s invertibility condition” isAAA−BBBDDD−1CCC, which is a square
summable sequence in the matrix power j.

▶ Lag this VMA one period and substitute for St in the system of observation equations

Yt = CCC
∞∑
j=0

(
AAA−BBBDDD−1CCC

)j
BBBDDD−1Yt−1−j + DDDηt .

▶ The DSGE model has a VAR(∞) as its reduced form dynamic representation, given
AAA−BBBDDD−1CCC has roots with modulus outside the unit circle.
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Fundamentalness and Misspecification of SVARs

The State Space of a Linearized DSGE model and a VAR(∞)(∞)(∞), II

▶ The invertibility restriction onAAA − BBBDDD−1CCC, which is conditional onDDD−1,
equates ηt with the forecast innovation of Yt .

▶ The system observation equations restrict the forecast innovation of Yt

Yt+1 − EtYt+1 = CCC
(
St+1 − EtSt+1

)
+ DDDηt+1.

▶ =⇒ innovations in the state vector create a “wedge” between forecast
innovations in Yt+1 and the structural errors ηt+1.

▶ Wedge disappears when the invertibility conditionAAA − BBBDDD−1CCC is satisfied
=⇒ St+1 − EtSt+1 is in the linear space spanned by the history of Yt+1.

▶ Searching for a specification of Yt that equates its forecast errors with the
structural errors of interest is another way to solve the problem of VAR
fundamentalness.
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Fundamentalness and Misspecification of SVARs

The State Space of a Linearized DSGE model and a VAR(∞)(∞)(∞), III

▶ The notion the specification of Yt matters for identification of a SVAR
has other implications.

▶ The identification issue is whether ηt is in the space spanned by Yt−j , j ≥ 0
=⇒ the history of Yt .

1. The first order issues are the choice of Yt and restrictions imposed on A0
(and Q in the AB-model) =⇒ goal is to recover structural shocks that map
into macro theory (i.e., DSGE model shocks).

2. =⇒ Claims the true data generating process is not a VAR misses the point.

▶ Same is true for estimators =⇒ the choice of the estimator does not alter the
identification problem of recovering structural errors in time series models.

▶ The exception is the research question can drive the choice of estimator.
1. If the question is whether there are shifts in policy regimes, which drive

responses by economic agents, estimators need to include regime switching
or time-varying parameters to “test” the hypothesis =⇒ Markov-switching (MS)
and/or time-varying parameter (TVP) BVARs.

2. SVARs also have difficulties recovering latent elements of the state vector St
(i.e., level of TFP, inflation expectations or output, inflation, and unemployment
gaps) =⇒ apply ML estimators to unobserved components models.
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