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1. Introduction

The question of how to test models of the business cycle transmssion mechanism rest, in

part, on data. The converse is data alone is insufficient to evaluate business cycles theories.

Unfortunately, data often need to be transformed to test these theories and models. A reason is

the trends apparent in quantity aggregates and price indexes produced for the national income

and product accounts (NIPAs). Trends are measurement error relative to the signal of the

business cycle, according to the practice engaged by some macroeconomists.

The NIPAs report GDP, personal consumption expenditures, fixed and intangible invest-

ment, imports, exports, government expenditures, and various price deflators that are often

upward trending. The top panels of figures 1 and 2 depict this behavior for the logs of U.S. per

capita real GDP and its chained weighted price deflator. However, these variables also exhibit

transitory movements, or business cycle fluctuations, around the trends as suggested for out-

put growth and inflation in the middle panels of these figures. If the goal is to test business

cycle theory, stripping data of trends would seem to be an important task. However, there is no

consensus among macroeconomists about the best method(s) to decompose aggregate data into

trends and cycles. A sampling of these disparate views is reflected by debates about (i) turn-

ing point analysis and business cycle analysis by Burns and Mitchell (1946), Koopman (1947),

Simkins (1994), King and Plosser (1994), Harding and Pagan (2016), Kulish and Pagan (2019),

and Beaudry, Galizia, and Portier (2020) and (ii) linear filtering and business cycle analysis by,

among others, Prescott (1986), Harvey and Jaeger (1993), King and Rebelo (1993), Cogley and

Nason (1995a), Hodrick and Prescott (1997), Canova (1998a, 1998b), Burnside (1998), Gómez

(1999), Harvey and Trimbur (2003), Murray (2003), Nelson (2008), Hamilton (2018), and Hodrick

(2020). The lack of consensus motivates the first part of these notes to review methods to sep-

arate trend from cycle in sample data. The way in which this task is accomplished can affect

the outcome of tests of business cycle theories. Hence, the review focuses on the trade offs

across several methods used to recover the hidden states of the trend and cycle of an economy.
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Measuring business cycle fluctuations in sample data is one aspect of the process of testing

theory. Another part builds dynamic stochastic general equilibrium (DSGE) models to compare

theoretical business cycle moments to sample moments. A one-sector stochastic growth model

is studied in the second part of the notes to keep the discussion manageable. The notes build,

solve for optimality conditions, construct the steady state, detrend and linearize these condi-

tions, and compute a linear approximate equilibrium of this real business cycle (RBC) model.

2. Measuring Trends and Business Cycles

Let’s begin the discussion by retrieving trends and cycles from aggregate data with a decom-

position of real GDP

lnyt = τt + εt, (2.1)

where lnyt denotes the natural logarithm of output, τt is the trend or permanent component of

output, and its transitory or cyclical component is εt . This univariate decomposition presumes

εt is covariance-stationary, but τt is not. An implication is the first-difference of lnyt , ∆ lnyt

= lnyt − lnyt−1, is stationary or first-order intergrated, lnyt ∼ I
(
1
)
.

Several methods are available to separate the trend and cycle in equation (2.1). These notes

discuss UC models, linear filtering, and least-squares filtering. A UC model specifies the data

generating processes (DGPs) of τt and εt while imposing restrictions to identify innovations

to these state variables. Univariate UC models are estimated by Watson (1986), Harvey and

Jaeger (1993), Harvey and Koopman (2000), Morley, Nelson, and Zivot (2003), Harvey and Trim-

bur (2003), Stock and Watson (2007, 2010), Shephard (2013), and Cogley and Sargent (2015).

Harvey, Trimbur, and Van Dijk (2007), Creal, Koopman, and Zivot (2010) and Berger, Everaert,

and Hauke (2016) engage Bayesian methods to estimate multivariate UC models. Linear fil-

tering depends either on restrictions about the forecast horizons of interest, the underlying

autoregressive moving average (ARMA) model, or the relative volatility of cyclical fluctuations

to movements in the trend. Whether the underlying DGP generates a finite sample or an infinite
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span of time series data is key for understanding linear filtering; see Proietti and Harvey (2000),

Gómez (1999, 2001), Pollock (2000), Schleicher (2004), Canova (2007, ch. 3), and DeJong and

Dave (2011, ch. 6). Least squares filtering applies ordinary least squares (OLS) regressions to

actual data, but leads and lags the dependent variable and its regressors to obtain forecast in-

novations that yield an estimate of the cyclical component. Hamilton (2018) is a recent example

of least squares filtering. Nonetheless, UC models, linear filtering, least squares filtering, and

least squares smoothing are linked together as shown by, among others, Harvey and Jaeger

(1993), Gómez (1999), Harvey and Koopman (2000), and Harvey and Trimbur (2003). These

results have implications for interpreting and using different trend-cycle decompositions.

There are other methods available to estimate trends and cycle in aggregate data. Turn-

ing point analysis, penalized least squares smoothing, and Markov-switching (MS) models are

among the most useful, but time and space constraints suggest the interested reader seek

other sources to learn about these methods. Harding and Pagan (2016) is a modern treatment

of turning point analysis of business cycles. Penalized least squares smoothing, which should

not be confused with least squares filtering, is discussed by Gómez (1999). Hamilton (1989)

introduces MS models to macroeconomics. Kim and Nelson (1999) is a good initiation into the

econometric modeling of MS in aggregate and financial time series.

2.a UC Models

The decomposition (2.1) is the observation or measurement equation of a state space repre-

sentation of an UC model. An UC model is completed by specifying laws of motion for τt and

εt , which are hidden or latent state variables, and an impulse structure for the innovations to

these states. Laws of motion for τt can be a random walk (with drift), local level trends, or seg-

mented trend or splines of these processes. The cyclical component εt is often in the class of

stationary autoregressive-moving average (ARMA) models, which also can be subject to similar

breaks. Markov-switching (MS) is a class of time series models that can generate τt and/or εt .

However, MS models are often nonlinear as in Hamilton (1989) and Kim and Nelson (1999).
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Morley, Nelson, and Zivot (2003) construct a UC model in which trend output evolves as

a random walk with drift

τt = µ + τt−1 + σηηt, ηt ∼ N
(
0, 1

)
, (2.2)

where µ > 0 is the deterministic trend growth rate and ση scales the volatility of the Gaussian

innovation, ηt , to τt . The long-run forecast of trend output is limk→∞ Et
{
τt+k − kµ

}
= τt

because it is a random walk. This carries over to the long-run forecast of lnyt . Combine the

observation equation (2.1) and random walk (2.2) to generate the long-run forecast of output,

limk→∞ Et
{
lnyt+k − kµ

}
= τt , as the current realization of the random walk trend.

Beveridge and Nelson (1981) are first to link a long-run forecast of an observable to the

current realization of a random walk trend. Watson (1986) and Morley, Nelson, and Zivot (2003)

point out that a UC model with a random walk state equation ties its long-run forecast of the

observable to the Beveridge and Nelson (BN) trend. This forecast is independent of restrictions

on εt other than it is (conditionally) linear and stationary. Morley (2002) uses this framework

and the Kalman filter to construct the BN trend for a stationary finite-order ARMA of ∆ lnyt .

The transitory component of output is a AR
(
p
)

εt =
p∑
j=1

θεt−j + συυt, υt ∼ N
(
0, 1

)
, (2.3)

in Morley, Nelson, and Zivot (2003), where Eεt = 0 and the eigenvalues of the companion matrix

ΘΘΘ ≡



θ1 θ2 . . . θp−1 θp

1 0 . . . 0 0

0 1 . . . 0 0

...
...

. . .
...

...

0 0 . . . 1 0


,

are outside the unit circle (i.e., the AR
(
p
)

is stationary).
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Morley, Nelson, and Zivot (2003) analyze and estimate their UC model given different

identifying assumptions. They set p = 2 and use the Kalman filter to estimate the states τt and

εt , produce the predictive likelihood, and employ classical optimization to obtain estimates of

µ, θ1, θ2, ση, and συ. Their estimates of τt and εt , depend on whether the correlation of the

innovations to these states, ηt and υt , ϱη,υ, is estimated or restricted to zero. When estimates

of ϱη,υ ∈
(
−1, 0

)
, trend fluctuations dominate movements in lnyt .

Another recent application of the UC model of equations (2.1) and (2.2) restricts εt to be

white noise (i.e., θj = 0 for j = 1, . . . , p). Stock and Watson (2007, 2010) and Cogley and Sargent

(2015) apply this UC model to estimate the BN trend of inflation. Estimates of trend inflation,

which are relatively smooth, are dominated by time-varying heteroscedasticity (i.e., stochastic

volatility in the scale volatilities on ηt and υt), in the inflation gap, εt , in these studies.

Harvey and Jaeger (1993) and Harvey and Trimbur (2003) estimate univariate UC models

with different classes of trend and cyclical processes. The former stochastic process is the local

level trend. A bivariate local level trend is specified by Harvey and Jaeger (1993) as

δ1,t = δ1,t−1 + δ2,t−1 + σζ,1ζ1,t, ζ1,t ∼ N
(
0, 1

)
,

δ2,t = δ2,t−1 + σζ,2ζ2,t, ζ2,t ∼ N
(
0, 1

)
,

(2.4)

where E
{
ζ1,t+j ζ2,t+s

}
= 0 for all j, s. The level trend δ1,t is an integrated random walk while

its slope δ2,t is time-varying because it is also a random walk. When ζ2,t generates a movement

in δ2,t , its impact on the slope of δ1,t lasts forever. The observation equation is

lnyt = δ1,t + ϑt + ϖt (2.5)

for the local level trend-UC model, where ϑt is a transitory component and ϖt is white noise

measurement error ϖt ∼ N
(
0, σ2

ϖ
)
. The transitory component is a stochastic cycle ϑt

ϑ∗t

 =

 ρ cosκc ρ sinκc

−ρ sinκc ρ cosκc


 ϑt−1

ϑ∗t−1

 +

 σν 0

0 σ∗ν


 νt

ν∗t

 , (2.6)

5



where ρ ∈
(
0, 1

]
acts to dampens cycles, κc ∈

(
0, π

]
is the frequency of cycles in radians (π =

3.14159. . .), νt ∼ N
(
0, 1

)
, ν∗t ∼ N

(
0, 1

)
, and E

{
νt+j ν

∗
t+s
}
= 0 for all j, s. Harvey and Jaeger

(1993) note the stochastic cycle (2.6) is observationally equivalent to a ARMA
(
2, 1

)
restricted

to have complex roots. These restrictions aim to replicate business cycle-like behavior in ϑt .

Harvey and Trimbur (2003) generalize the local level trend-UC model of (2.5), (2.4), and

(2.6) in two ways. First, they specifyM−1 level trends that are driven by a common slope trend

δ1,t = δ1,t−1 + σζζt, ζt ∼ N
(
0, 1

)
,

δi,t = δi,t−1 + δi−1,t−1, i = 2, . . . , M.
(2.7)

The stochastic cycle also has M components, but the innovation to ψ∗i,t , ν
∗
i,t , is set to zero for

i = 1, . . . , M . The observation equation is

lnyt = δm,t + ψm,t + ϖt (2.8)

for the generalized local level trend-UC model. The generalized local level trend-UC model

endows lnyt with m unit roots. This suggests the generalized local level trend-UC model can

be used to obtain estimates of trends and stochastic cycles for any I
(
M
)

time series.

A strength of UC models is the explicit character of the assumptions used to identify the

decomposition of lnt into trend and cycle. These assumptions are clear about the dynamic prop-

erties of these hidden state variables. For example, Morley, Nelson, and Zivot (2003) show that

estimates of the BN cycle in U.S. output depend on whether ϱη,υ = 0 or is estimated. Similarly,

Harvey and Trimbur (2003) report estimates of the stochastic cycleψM,t of U.S. investment that

are sensitive to the choice of M . Hence, a strength of UC models is also a weakness. Misspec-

ification and non-identification introduce biases into estimates of trends and cycles produced

by UC models. Bayesian estimation of UC models, as in Harvey, Trimbur, and Van Dijk (2007),

is not immune from identification problems. These problems appear in a different guise in

Bayesian time series econometrics as discussed by Poirier (1998), among others.
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2.b Linear Filters

A second approach to calculate trend and cycle is linear filtering. A linear filter solves a mean

square error (MSE) minimization problem. This is a consequence of the Riesz–Fischer theo-

rem. It states a (measurable) function on
[
−π, π

]
converges in MSE, given (if and only if) the

associated Fourier series does; see Sargent (1987, pp. 249-253) and DeJong and Dave (2011,

p. 123). However, the object of choice that solves the minimization problem define different

classes of linear filters. This distinction is important for understanding several issues about

linear filters. A complete analyses of linear filters is left to, among others, Koopmans (1974),

Brillinger (1981), Granger and Newbold (1986), Harvey (1991, 1994), and Hamilton (1994).

Advocates of using linear filters to achieve this decomposition argue as Prescott (1986)

does that “business-cycle phenomena . . . are nothing more nor less than a certain set of statis-

tical properties of a certain set of important aggregate time series.” Prescott states that facts

about the business cycle are immutable given a ‘smooth’ process for the trend. The source

of the idea of smooth trend is Lucas (1981). He states, innocently enough, that the trend of a

developed economy evolves as a smooth curve that slowly undulates through time. The trend

component of a linear filter captures this behavior. Lucas goes on to argue that the business

cycle can be represented, ‘by a stochastically disturbed difference equation of very low order’

about the slowing evolving trend. Some students of the business cycle take this to mean the

trend is independent of the econometric problem of measuring the transitory path of an econ-

omy. Instead, the trend is defined by the algorithm that separates cycle from trend. Leading

examples are the linear filters of Hodrick and Prescott (1997) and Baxter and King (1999).

Linear filters operate to remove the irregular (i.e., temporary) component of the actual time

series from its trend. An example of a linear filter is the first difference operator, ∆ ≡ 1−L, L is

the lag operator, xt−1 = Lxt . It annihilates the permanent component of a difference stationary

or I
(
1
)

time series. All that remains is a transitory component, which is not necessarily the

true cyclical process of xt . Hence, ∆xt leaves only higher frequency fluctuations, which makes
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∆ an example of a high pass filter. Similarly, a low-pass filter removes all but a selected range

of lower frequency movements in the data. There are linear filters that annihilate the low and

high frequencies. These are referred to as band pass filters.

2.b.i The Frequency Domain and Spectral Analysis

Studying linear filters is made easier by introducing several concepts from spectral analysis.

Spectral analysis operates in the frequency domain,ω ∈
[
0, 2π

]
, rather than the time domain.

The frequency domain works to recover the cyclical properties of time series. These properties

are buried in the autocovariances,
{
γℓ
}∞
ℓ=−∞, of a times series, xt . Hence, frequency domain

analysis starts with the autocovariance generating function (ACGF). The ACGF of xt is gx
(
z
)
=

C
(
z
)
C
(
z−1

)
gu
(
z
)
=
∣∣C(z)∣∣2 gu

(
z
)
=
∑∞
ℓ=−∞ γℓz

ℓ, where
∣∣C(z)∣∣ is the modulus of C

(
z
)
, γℓ is

the autocovariance of xt at lag ℓ, its symmetry sets γℓ = γ−ℓ, and the ACGF of ut ∼ IID (0, 1)

is one because its γ0 = 1 and γℓ = 0 for all ℓ ≠ 0.

The next step is to utilize de Moivre’s formula. It defines the complex unit circle to

be e−iω = cos
(
ω
)
− i sin

(
ω
)
, where i =

√
−1. Setting this equal to z and dividing by 2π

yields the population spectrum of xt , Sx
(
ω
)
= 0.5π−1gx

(
e−iω

)
=
∣∣∣C(e−iω)∣∣∣2

gu
(
e−iω

)
=

0.5π−1
∑∞
ℓ=−∞ γℓe

−iωℓ. This shows the population spectrum of xt , Sx
(
ω
)
, is a function of

autocovariances at any frequency ω ∈
[
0, 2π

]

Sx
(
ω
)
= 1

2π

∞∑
ℓ=−∞

γℓ
[
cos

(
ωℓ

)
− i sin

(
ωℓ

)]

= 1
2π

∞∑
ℓ=−∞

γℓ
[
cos

(
ωℓ

)
+ cos

(
−ωℓ

)
− i sin

(
ωℓ

)
− i sin

(
−ωℓ

)]

= 1
2π

γ0 + 2
∞∑
ℓ=1

γℓ cos
(
ωℓ

) ,

where the first equality is an implication of the spectral representation theorem and the last

equality relies on cos 0 = 1, cosϖ = cos
(
−ϖ

)
, sin 0 = 0, and sin

(
−ϖ

)
= − sinϖ.
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The population spectrum has several implications that are useful for studying aggregate

data. First, the long-run behavior of xt is described by the population spectrum at frequency

zero, Sx
(
0
)
. Summing the γℓs from ℓ = 0, . . . , ∞ yields Sx

(
0
)
= 0.5π−1

[
γ0 + 2

∑∞
ℓ=1 γℓ

]
,

which is the long-run variance of xt . Estimators of long-run variances are used, for example, to

compute heteroscedastic, autocorrelation consistent (HAC) robust (i.e, Newey-West) standard

errors for linear and nonlinear regressions. Next, suppose S
(
ω
)

is integrated over some fre-

quencies from −ωa to ωa,
∫ωa
−ωa

Sx
(
ω
)
dω. Since the population spectrum is symmetric, it

equals 2
∫ωa

0
Sx
(
ω
)
dω. Integrating Sx

(
ω
)

gives the random periodic components that are

responsible for the variance of xt from frequency zero to ωa. Thus, the population spectrum

at frequencyωmeasures the contributions of periodic or cyclical movements less thanω that

explain the variance of xt .

The sample version of the population spectrum is the sample periodogram. The sample

periodogram of xt is

Ŝx
(
ω
)
= 1

2π

T−1∑
ℓ=−T+1

γ̂ℓe−iωℓ =
1

2π

γ̂0 + 2
T−1∑
ℓ=1

γ̂ℓ cos
(
ωℓ

) ,
where γ̂ℓ denotes a sample estimate of T autocovariances from lag ℓ = 0, . . . T−1. This implies

xt is stationary conditional on γ̂ℓ ∈ (−∞, ∞
)

for ℓ = 0, . . . , T−1.

The sample periodogram is computed in one of two ways. The transfer function of a

stationary ARMA model can be engaged to construct the ACGF. Suppose xt is a ARMA
(
p, q

)
,

θ
(
L
)
xt = φ

(
L
)
ut , where θ

(
L
)
= 1 −

∑p
j=1 θj , φ

(
L
)
= 1 +

∑q
k=1φk, and ut ∼ N

(
0, σ2

u
)
. As-

suming θ
(
L
)

and φ
(
L
)

are invertible, the estimated population specturm is

Ŝx
(
ω
)
= σ̂2

u
2π



1 +
q∑
k=1

φ̂ke−iωk
1 +

q∑
k=1

φ̂keiωk


1 −
p∑
j=1

θ̂je−iωj
1 −

p∑
j=1

θ̂jeiωj


 ,

where φ̂k, θ̂j , and σ̂2
u represent estimates of the coefficients of the ARMA

(
p, q

)
of xt ; see
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Akaike (1969), Parzen (1974), and Hamilton (1994, pp. 154–155, 164–165) and Kano and Nason

(2014) for an example using a structural VAR.

The other estimator of the sample periodogram is non-parametric. The non-parametric

estimator of the population spectrum and ACGF is built on the fast Fourier transform (FFT).

The FFT uses the discrete Fourier transform to calculate the ACGF as f
(
ω
)
=
∑∞
ℓ=−∞ γℓe

−iωℓ.

The Fourier inversion theorem recovers the ACGF using γℓ = 0.5π−1
∫ π
−π
f
(
ω
)
e−iωℓdω. As a

result, the FFT is a computational efficient algorithm to compute the sample periodogram.

Computing a non-parametric sample periodogram also assumes there is some frequency

ϕ that when close to ω (i.e., say, within a ϵ > 0), the same holds for Sx
(
ϕ
)

and Sx
(
ω
)
. This

suggests weighting or smoothing Ŝx
(
ω
)

to satisfy this result. The smoothing function, which

is also know as a window, is wℓ = w
(
ωℓ+m, ωℓ

)
. Plugged into the sample periodogram it

produces the smoothed spectrum

Ŝx
(
ω
)
= 1

2π

T−1∑
ℓ=−T+1

γ̂ℓe−iωℓ =
1

2π

γ̂0 + 2
T−1∑
ℓ=1

wℓγ̂ℓ cos
(
ωℓ

) , (2.9)

where h is the bandwidth of wℓ,
∑h
ℓ=1 wℓ = 1, the period of the cycle is 2π

/
ω for a cycle of

ω, ωℓ = 2πℓ
/
T for a sample of length T , and T

/
ℓ = 2πℓ

/
ωℓ defines the associated period.

There is a long menu of window functions from which to choose. The Bartlett and Bartlett-

Hanning windows are popular choices for wℓ to compute the smoothed spectral density (2.9).

The former window function sets the unnormalized weights to wBR,ℓ = 1 − q
/(h − 1

)
for ℓ =

1, . . . , h−1 and wBR,ℓ = 0 for ℓ ≥ h . The latter window function produces the unnormalized

weights wBH,ℓ = 0.62 − 0.48
∣∣∣ℓh − 0.5

∣∣∣ + 0.38 cos
[
2π

(
ℓh − 0.5

)]
, where ℓh = ℓ

/(h −1
)

for ℓ

= 1, . . . , h−1 and wBH,ℓ = 0 for ℓ ≥ h . Both windows require h > 3 (and its is an odd integer).

The normalized weights are wk,ℓ = wk,ℓ
/∑h

j=1 wk,j , where k = BR, BH.

Otherwise, there is no theory for fixing h . Applying a window to smooth the sample

periodogram shrinks its variance, but introduces bias into the smoothed spectral density (2.9).
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This is a general result for choosing window widths in nonparametric settings. There is a trade

off between a smaller variance and the potential for creating bias. This is the case because,

although the sample periodogram is an asymptotically unbiased estimator of the population

spectrum, the sample periodogram has substantial variance. There are methods to choose h

optimally that aim to trade off variance for bias, but for most purposes in macroeconometrics

the payoff of these methods is less than the costs.

Figure 3 depicts the normalized weights of the Bartlett and Bartlett-Hanning window func-

tions for h = 7 and 21. The solid lines plot wBR,ℓ while the dot-dashed lines denote wBH,ℓ. Note

the indexes of the weights have been centered around zero. The Bartlett window is a triangle

or tent function. Increasing h shrinks wBR,ℓ because the weights are spread across a larger

range. However, the characteristic shape of the Bartlett window function is left unchanged. The

Bartlett-Hanning window has fatter tails and is more peaked around zero compared with the

Bartlett window function. At h = 21, a bell shape begins to take shape in the Bartlett-Hanning

window function. This is its characteristic shape because wBH,ℓ > wBR,ℓ at small ℓ while the

inequality reverses as ℓ increases.

Figure 4 plots the smoothed spectral densities of U.S. output growth and its first difference.

The smoothing function is the Bartlett-Hanning window with h = 11. The top panel of figure 4

contains the spectral densities of quarter over quarter and year over year growth in per capita

real GDP, Ŝ∆y and Ŝ(
1−L4

)
y , from 1948q1 to 2019q4. These plots show the explanatory power

of the autocovariances of ∆ lnyt and
(
1 − L4

)
lnyt are concentrated between eight and 32

quarters per cycle (i.e., peaks in Ŝ∆y and Ŝ(
1−L4

)
y occur in these frequencies). For example, the

peak or maximum power of Ŝ∆y occurs at nearly 12 quarters per cycle. The spectral density

of
(
1 − L

)2
lnyt has its greatest power in the short-run frequencies higher than six quarters

per cycle as displayed in the bottom panel of figure 4. This plot is consistent with the idea

that over differencing a stationary time series eliminates fluctuations at the business cycle and

lower frequencies. This also suggests strong mean reversion in
(
1− L

)2
lnyt .
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Plots of the smoothed spectral densities of chained weighted GDP deflator inflation and(
1 − L

)2
lnPt appear in figure 5. The construction and sample period of Ŝ∆P , Ŝ(

1−L4
)
P , and

Ŝ(
1−L
)2
P

parallel the discussion of the previous paragraph. The bottom panel of figure 5 shows

Ŝ(
1−L
)2
P

has greatest power in the short-run. This is also true for Ŝ(
1−L
)2
Y

in figure 4. However,

the spectral densities of∆ lnPt and
(
1−L4

)
lnPt have maximum power at frequency zero (i.e, the

infinite long-run). There are smaller peaks in Ŝ∆P and Ŝ(
1−L4

)
P at nine years per cycle, which is

a lower frequency than often attributed to the business cycle. A third and smaller peak is in the

business cycle frequencies at about 15 quarters per cycle. Nonetheless, the power explaining

fluctuations in inflation is concentrated in the growth to long-run frequencies.

2.b.ii Wiener-Kolmogorov filters

One class of linear filters takes the existence of an ideal filter as given. An ideal filter is

xt =
∞∑

ℓ=−∞
Cℓξt+ℓ, (2.10)

where xt and ξt are a stationary time series of infinite length,
∑∞
ℓ=−∞ Cℓ = C

(
L
)
, is the impulse

response function (IRF) of this ideal filter, and
∑∞
ℓ=−∞

∣∣Cℓ∣∣ < ∞ (i.e., absolutely summable).

The stationarity of ξt is useful, but is not necessary. The ideal linear filter (2.10) is also an

infinite-order moving average, MA
(
∞
)
. The MA

(
∞
)

is a linear mapping from ξt to xt .

A finite-order IRF minimizes the MSE between the ideal filter (2.10) and its finite sample

approximation. The approximation is

x̂t =
k∑

ℓ=−s
Ĉt,ℓξt+ℓ, (2.11)

where
{
x̂t
}T
t=1 is the finite sample cousin of

{
xt
}∞
t=−∞ and s and k define a window of s+1+k

observations on which the finite sample filter is computed at date t. The minimization problem

solves for the finite-order IRF {
Ĉt,ℓ

}
= arg min E

{(
xt − x̂t

)2} (2.12)

which produces a Wiener-Kolmogorov filter, where k= s is not necessary (i.e., the approximation
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does not impose symmetry, Ĉt,ℓ ≠ Ĉt,−ℓ). The finite sample Wiener-Kolmogorov filter (2.12) of

the ideal filter (2.10) also does not restrict the IRF to be time-invariant.

The mapping from the ideal filter (2.10) to the finite sample Wiener-Kolmogorov filter

depends on the transfer function. The transfer function of the ideal linear filter (2.10) is

C
(
e−iω

)
. A useful way to factor the transfer function is C

(
e−iω

)
= Ga (ω)e−iPhω, where

the gain of the filter, Ga (ω) =
∣∣∣C (e−iω)∣∣∣, is the modulus of C (ω),

∣∣∣C (e−iω)∣∣∣, Ph =

tan−1
(
−Cimag (ω)

/
Creal (ω)

)
, measures the phase shift (i.e., change in the lead-lag behav-

ior of the ACGF) induced by the filter, and its decomposition into real and imaginary parts,

C (ω) = Creal (ω) + iCimag (ω). The inverse Fourier theorem states the coefficients of the

IRF are recovered from Ct,ℓ = 0.5π−1
∫ π
−π
Ct
(
e−iω

)
eiωdω. Since the IRF of the ideal filter is

generated in the frequency domain, Schleicher (2004) suggests using

Ĉt,ℓ =
1

2π

∫ π
−π

∣∣∣Ct (e−iω) − Ĉt (e−iω)∣∣∣2
dω,

to recover the IRF of the finite sample Wiener-Kolmogorov filter.

The transfer function solves the problem common to several linear filters used by macroe-

conomists that the IRFs of these filters are analytic only in the frequency domain. Baxter and

King (1999) develop a filter that is a leading example. Their filter rests on the widely held notion

that the business cycle lives in frequencies between eight (two) and 32 (eight) cycles per quarter

(year). Restricting the IRFs,
{
Ĉt
}
, on these frequencies, defines a band pass filter because the

Baxter-King filter removes frequencies lower than eight years per cycle and higher than two

years per cycle. Furthermore, the Baxter-King filter aims to leave the lead-lag structure of a

time series unchanged (i.e., no phase shifts), remove trend components in an integrated time

series resulting in a stationary business cycle component, and approximate the ideal band pass

filter (i.e., annihilate all fluctuations above and below the cutoff frequencies).

Nonetheless, Murray (2003) critiques the Baxter-King filter, given xt satisfies the BN de-

composition. The Baxter-King filter can generate spurious cyclical behavior when xt ∼ I
(
1
)
.
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Harvey and Trimbur (2003) show their local level trend model of equations (2.8), (2.7), and

the associated system of stochastic cycles can duplicate the Baxter-King filter by changing the

order of integration of xt .

2.b.iii Optimal Linear Filters

The transfer functions of the ideal linear filter (2.10) and its finite sample approximation (2.11)

are used by Schleicher (2004) to solve the mininization problem (2.12). His solution starts with

E
{(
xt − x̂t

)2} = ∫ π
−π

∣∣∣C (e−iω) − Ĉt (e−iω)∣∣∣2
fx
(
ω
)
dω,

which is a restatement of the transfer function approximation of the ideal filter. Next, Schleicher

(2004) employs the ARMA
(
p, q

)
of xt is θ

(
L
)
xt =φ

(
L
)
ut , where the lag polynominals θ

(
L
)

and

φ
(
L
)

are invertible. The ARMA can be written as an MA
(
∞
)
, xt =

[
φ
(
L
)/
θ
(
L
)]
ut = ψ

(
L
)
ut ,

the coefficients of ψ
(
L
)

are absolutely summable (while the restriction on ut can be relaxed

to WN instead of Gaussian). These assumptions let Schleicher (2004) recast the mininization

problem (2.12) as

Min Ĉt,ℓ
MSE

(
Ĉt,ℓ

)
=
∫ π
−π

∣∣∣C (e−iω) − Ĉt (e−iω)∣∣∣2
fx
(
ω
)
dω. (2.13)

The optimal choice of
{
Ĉt
}

weights the distance between the infinite length transfer function

and its finite sample approximation by the spectral density of xt frequency by frequency.

Schleicher (2004) extends this result to an arbitrary order of integration for xt ∼ I
(
M
)

by

invoking two assumptions. First, the stronger restriction of square summability is placed on

ψ
(
L
)
,
∑∞
j=1ψ

2
j <∞. Next, the transfer function of any candidate finite sample filter,

∣∣∣Ĉ (e−iω)∣∣∣,
equals the transfer function of the ideal filter,

∣∣∣C (e−iω)∣∣∣, at frequency zero. In this case, the

solution
{
Ĉt
}

to the minimization problem (2.13) renders its left hand side finite. However,

Schleicher (2004) suggests constructing
{
Ĉt
}T
t=1

parametrically by estimating a ARMA
(
p, q

)
after differencing xt to render it stationary. Hence, his procedure computes the optimal coef-
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ficients of the linear filter conditional on a ARMA
(
p, q

)
for xt or a stationary transformation

of it. These results are in the spirit of the BN smoother created by Proietti and Harvey (2000).

2.b.iv The Hodrick and Prescott (1997) Linear Filter

There is a way to construct an optimal linear filter without having to parameterize a ARMA. A

leading example of this approach is the linear filter of Hodrick and Prescott (1997). They start

with the decomposition (2.1) of lnyt into trend, τt , and cycle, εt . Minimizing the square of εt

subject to a constraint on the squared second difference of τt yields the quadratic program

Min{τt}Tt=1

T∑
t=1

[(
lnyt − τt

)2
+ λ

[(
τt − τt−1

)
−
(
τt−1 − τt−2

)]2
]
,

where the Lagrange multiplier, λ, on the constraint is often referred to as the smoothing pa-

rameter of the Hodrick-Prescott filter and the constraint is the second different of τt .

Movements in τt are penalized by the constraint of the Hodrick-Prescott minimization

problem. The penalty function is an incentive to smooth τt because its second difference places

costs on low frequency fluctuations. This motivates calling λ the Hodrick-Prescott smoothing

parameter. As λ→∞ (given T ), the incentive to smooth τt becomes large enough to transform

it into a deterministic function of time; see Cogley and Nason (1995a) and Hamilton (2018).

The Hodrick-Prescott filter has two more well known features. Singleton (1988) shows the

Hodrick-Prescott filter passes frequencies higher than 32 quarters per cycle when lnyt ∼ I
(
0
)
.

In this case, the Hodrick-Prescott filter works as a high pass filter. Second, King and Rebelo

(1993) present analysis that the Hodrick-Prescott filter renders stationary lnyt ∼ I
(
M
)

for M

= 1, 2, 3, 4. Pollock (2000) and Gomez (2001) also point out the Hodrick-Prescott filter is in

the class of Butterworth filters used in electrical engineering. However, Phillips and Jin (2021)

note there other traditions in linear filtering that can lay claim to the Hodrick-Prescott filter.

There is no analytic solution in the time domain for the Hodrick-Prescott filter. Cogley

and Nason (1995a) build on King and Rebelo (1993) to obtain a solution to the (infinite length)
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Hodrick-Prescott minimization problem that is the time-invariant two-sided linear filter ε̂t =

HP
(
L
)

lnyt , where HP
(
L
)
=
∣∣ϱ∣∣2

L2

[
1 − 2ϱrealL +

∣∣ϱ∣∣2
L2

1 − 2ϱrealL−1 +
∣∣ϱ∣∣2

L−2

](
1−L

)4, ϱ−1 is the stable root

of the lag polynomial λ−1L2 +
(
1 − L

)4 = 0,and
∣∣ϱ∣∣ is the modulus of ϱ. This solution is ex-

plicit about the King and Rebelo (1993) observation that the Hodrick-Prescott filter can make

stationary any time series with up to four unit roots. Hamilton (2018) offers a similar two-sided

solution, τ̂t = F−1
(
L
)

lnyt , but for the finite sample Hodrick-Prescott minimization problem,

where F
(
L
)
= 1 + λ

(
1 − L−1

)2(
1 − L

)2
and F−1

(
L
)
= λ−1L2

λ−1L2 +
(
1− L

)4 . Hence, the Cogley

and Nason (1995a) and Hamilton (2018) solutions involve lag polynomial functions implying

transfer functions with infinite order IRFs. This explains the focus on computing exact (nu-

merical) expressions to plug in for F−1
(
L
)

by McElroy (2008), de Jong and Sakarya (2016), and

Cornea-Madeira (2017).

Hodrick and Prescott (1997) recognized the problem, which lead them to use the Kalman

filter to generate τt and εt . However, initial conditions for the trend, τ0 and τ−1 are needed

to run the Kalman filter because L2 appears in the numerator of F−1
(
L
)
. As Hamilton (2018)

among others discuss, standard practice is to endow τ0 and τ−1 with a covariance matrix that

has a diffuse prior (i.e., large determinate) to initialize the Kalman filter. However, this prior

has an interesting effect on the Hodrick-Prescott filter that is a source of debate.

Advocates of the Hodrick-Prescott filter often are interested in a DGP in which
(
1−L

)
τt is

a random walk and εt ∼ WN . Harvey and Jaeger (1993), Gomez (1999), and proposition 1 of

Hamilton (2018) show the same DGP is created by restricting ζ1,t = ϑt = 0 in equations (2.4) and

(2.5) of the Harvey and Jaeger (1993) local level trend UC model. If λ = σ2
ϖ

/
σ2
ζ,2, the Hodrick-

Prescott filter and the restricted local level trend UC model produce identical estimates of trend

and cycle. The observational equivalence of the Hodrick-Prescott DGP implicitly assumes the

innovation to
(
1 − L

)2τt , εt , and
(
τ0, τ−1

)
are uncorrelated. Moreover, a DGP built on white
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noise transitory component seems to be at odds with a priori notions of business cycles in

developed economies.

This begs the question of the standard calibration of the Hodrick-Prescott smoothing

parameter for quarterly data, which sets λ = 1600. This calibration is grounded in the Hodrick

and Prescott (1997) argument that the standard deviations of εt and
(
1 − L

)2τt are 5% and

0.125%, respectively. In their view, these values represent “moderately large” volatility in trend

and cycle, which seem to imply values greater than the sample means of σε and σ∆2τ . The

upshot is
√
λ = 40 = 5

/
0.125. Hence, the Hodrick-Prescott filter generates volatility in its cycle

that is orders of magnitude greater than volatility in the trend in quarterly data. Nonetheless,

de Jong and Sakarya (2016) are clear there is no consensus about calibrating λ when applying

the Hodrick-Prescott filter to data at the monthly and annual frequencies. Perhaps, the reason

is Phillips and Jin (2021) show the choice of λ cannot be divorced from the sample size T .

Issues with the calibration of λmotivates Hamilton (2018) to estimate the restricted local

level trend UC by maximum likelihood. He reports estimates of λ ranging from less than 0.025

to nearly 10 for macro aggregates, prices, and asset prices and returns. The non-optimality of

λ = 1600 suggests the potential for the Hodrick-Prescott filter to produce spurious trends and

cycles using this calibration as argued by Harvey and Jaeger (1993), Cogley and Nason (1995a),

and Hamilton (2018). Spuriousness occurs when the filter produces trend and cycle that do not

replicate the true underlying DGP.

Two more critiques of the Hodrick-Prescott filter are also about the ways it can induce

spurious behavior in detrended data. The Hodrick-Prescott filter is known for creating different

behavior at the beginning and end of the sample compared with observations in the middle,

where the length of the start up and wind down is a function of T ; see Nelson and Kang (1981).

The cycle can exhibit unit root behavior early and late in the sample. A point made by de Jong

and Sakarya (2016), Hamilton (2018), and Phillips and Jin (2021). Schleicher (2004) proposes a

solution to the problem.
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The Hodrick-Prescott filter produce estimates consistent with εt ∼ I
(
0
)

in the middle of the

sample. Nonetheless, Hamilton uses results from Cogley and Nason (1995a) about applying the

Hodrick-Prescott filter to I
(
1
)

time series to show it creates spurious periodicity in the middle

of the sample. When lnyt ∼ I
(
1
)
, the underlying DGP has a BN trend. The essence of the

problem is HP
(
L
)

has a fourth difference operator, which after differencing lnyt leaves three

roots unattended, εt = HP
(
L
)(

1 − L
)3∆ lnyt = λF−1

(
L
)(

1 − L
)3

L−2∆ lnyt . Over differencing

∆ lnyt and hitting it with HP
(
L
)

or F−1
(
L
)

is a source of spurious periodicity in τt and εt .

Hodrick (2020) defends the Hodrick-Prescott filter in two parts. First, he argues Hodrick

and Prescott (1997) and other advocates of their filter never put weight on a DGP in which

the cyclical component is white noise. Rather, Hodrick and Prescott (1997) were arguing for a

nonparamteric model of trend and cycle because, as Hodrick (2020) notes, they claimed that

specifying a stochastic process for τt alone is insufficient to identify the true DGP of sample

data. Second, he estimates widely used ARMA and UC models by ML to calibrate simulation

experiments that produce Hodrick-Prescott filtered cycles of aggregate U.S. data. The simu-

lated ARMA models are responsible for Hodrick-Prescott filtered cycles that display spurious

periodicity. This is not the case for simulated Hodrick-Prescott filtered cycles generated by the

UC models. Since the Hodrick-Prescott filter replicates the true underlying cyclical dynamics of

sophisticated DGPs that mimic aggregate fluctuation in developed economies, Hodrick (2020)

contends this is evidence supporting the use of the Hodrick-Prescott filter in macro research.

2.c Least Squares Filtering

Hamilton (2018) develops a method employing least squares regressions to decompose aggre-

gate variables into trend and cycle. The approach is grounded in three facts about lnyt ∼ I
(
M
)

for M > 1. The first fact is
(
1− L

)M
lnyt ∼ I

(
0
)
. Hence, the least squares regression

lnyt+h = α1,h lnyt +
M∑
k=2

αk,h
(
1− L

)j−1
lnyt + eh,t,

yields estimates of the coefficients on the regressors that sum to one and regression errors,
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{
eh,t

}T
t=h+1

, that are stationary asymptotically. The asymptotic theory relies on arguments

found in section 5 of Sims, Stock, and Watson (1990). Their theory also can be used to show

similar asymptotic results hold for the regression lnyt+h =
∑M
k=1 ak lnyt−k + eh,t that unwinds

the differences (1−L
)

lnyt−1, (1−L
)2

lnyt , . . . , (1−L
)d−1

lnyt and rearranges the regressors,

where the aks are sums of αk,h, k = 1, . . . , m. This regression is

lnyt+h = β0 +
p∑
j=1

βj lnyt−j+1 + ςt+h, (2.14)

in sample. Hamilton (2018) estimates it by OLS, where
{
ς̂t+h

}T
t=h+1

is the estimated cycle.

The parameters h and pmust be calibrated to implement the Hamilton detrending regres-

sion (2.14). Hamilton (2018) recommends h = 8 and p = 4 for quarterly data. Setting h = 8

depends on “the standard benchmark” of a two year business cycle horizon. The choice of p

is to insure stationarity of the regression error ςt+h. Since proposition 4 of Hamilton (2018)

restrictsM ≤ p, the goal is to set p large enough to render
(
1−L

)M
lnyt ∼ I

(
0
)

in large sample.

This suggests intuition for p = 4 is motivated by the King and Rebelo (1993) result that the

Hodrick-Precott filter renders stationary lnyt ∼ I
(
M
)

for M ≤ 4.

Hodrick (2020) critiques the Hamilton (2018) detrending regression (2.14). The critique

involves comparing the Hamilton trend, E
{
lnyt+h

∣∣∣ lnyt, . . . , lnyt−p+1

}
, with the BN trend,

limh→∞, p→∞ E
{
lnyt+h

∣∣∣ lnyt, . . . , lnyt−p+1

}
. The double limit eliminates correlation between

the information set and innovation to the BN trend. The same holds for the Hamilton trend,

but Hodrick (2018) notes the BN trend relies on a larger information set, lnyt , . . . , lny−∞, rela-

tive to the Hamilton regression conditioning information, lnyt , . . . , lnyt−p+1. A consequence

is the Hamilton detrending regression (2.14) may fail to use all the information available to

estimate the Hamilton cycle, ςt+h = lnyt+h − E
{
lnyt+h

∣∣∣ lnyt, . . . , lnyt−p+1

}
. This is a large

sample problem pointing to misspecification of the Hamilton detrending regression (2.14). If

this regression does not condition on all available information, there is also potential for small
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sample bias in the OLS estimator. These large and small sample problems are unstudied at

least at this moment. Schüler (2021) finds the Hamilton detrending regression alters the lead-

lag properties of a time series frequency by frequency (i.e., a phase shift). Moreover, the impact

differs for different times series.

2.d Summing Up

This section began with a question that remains open. The question is whether to prefer UC

models, linear filters, or least squares filtering for constructing sample moments of the business

cycle to test DSGE models. The UC models and least squares filtering, which are parametric

methods, can suffer from large sample problem of misspecification and biased estimates in

small sample. Linear filters are argued to avoid these problems because these are nonparamet-

ric estimators of trend and cycle. However, linear filtering is subject to ad hoc calibration of

high and low pass frequency cutoffs and window width and smoothing parameters, which can

induce spurious periodicity. The bottom line is there seems to be no clear choice along the

time series econometric dimension.

Figures 5, 6, and 7 reinforce this point. Plots of Hodrick-Prescott, Baxter-King, and Hamil-

ton cycles (i.e., gaps) appear in the top, middle, and bottom panels of these figures. Output

gaps, price level gaps, and inflation gaps are found in figures 5, 6, and 7, respectively. Output

is per capita chain weighted real GDP. The price level is the chain weighted GDP deflator, which

is the source of inflation gaps plotted in figure 7. The quarterly sample runs from 1948Q 1 to

2019Q4. However, the Baxter-King depends on a smoothing window of width h that removes

h observations at the beginning and end of the sample while h observations are eliminated at

the start of the sample to estimate Hamilton cycles. The figures also contain NBER recession

dates as silver vertical shading.

The Hodrick-Prescott, Baxter-King, and Hamilton output gaps display business cycle fluc-

tuations consistent with the NBER recession dates in figure 5. There are troughs in these output

gaps around the time the NBER dating committee places the end of a recession as shown in
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the bottom panel of figure 5. These plots also reveal the Hamilton output gap is more volatile

compared with the Hodrick-Prescott and Baxter-King filters.

The same is often not true for plots of the price level gaps in figure 6. The bottom panel

of the figure contain Hodrick-Prescott and Baxter-King price level gaps that peak during NBER

dated recessions, especially pre-1984, but the Hamilton price level gap lacks this co-movement

with the NBER recession dates during the entire sample. After 1983, there is a noticeable drop

in the magnitude of the fluctuations in the three price level gaps.

Figure 7 depicts inflation gaps that behave similar to the output gaps of figure 5. Gap

inflation troughs at the end of NBER dated recessions while peaking between the vertical silver

shading, which indicates gap inflation is procyclical. There is also a substantial drop in the

volatility of the Hodrick-Prescott and Baxter-King inflation gaps post-1983, but the Hamilton

inflation gap does not display nearly as sizable reduction.

Three more features of the Hodrick-Prescott, Baxter-King, and Hamilton output gaps, price

level gaps, and inflation gaps are worth mentioning. First, the top panel of figures 5 and

7 are clear that as λ becomes large the Hodrick-Prescott output and inflation gaps fall onto

linearly detrended output and inflation. For the Hodrick-Prescott price level gap and large λ,

the comparison is to the quadratically detrended price level as in the top panel of figure 6

because stationarity of ∆πt implies lnPt ∼ I
(
2
)
. Next, Baxter-King output and inflation gaps

differ most for a small window width of κ = 4 quarters in the middle panel of figures 5 and 7.

As κ increases to 12 and 32 quarters, these differences are less apparent. The middle panel of

figure 5 shows the Baxter-King price level gap is quantitatively different across the three values

of κ. Third, the bottom panels of figures 5, 6, and 7 display Hodrick-Prescott and Baxter-King

output, price level, and inflation gaps that are difficult to distinguish on the ocular metric. Plots

of the Hamiltion gaps in the same panels are easy to tell apart from the Hodrick-Prescott and

Baxter-King gaps. Canova (1998a) and Hodrick (2020) have also noted this.

Canova (1998a, 1998b) and Burnside (1998) debate the use of different detrending meth-
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ods and construction of “business cycle facts.” They agree that relying on a single detrending

method leads to incorrect inferences about the ability of DSGE models to match sample mo-

ments of the business cycle. Different detrending methods can uncover different of stories

about the business cycle. Hence, the issue is not so much that one detrending method domi-

nates another. Instead, their disagreement is about the methods employed to select the most

powerful moments on which to assess the match between macro theories and sample data and

the econometric methods employed to conduct the evaluation.

Perhaps, there is a way to move beyond this debate. For example, the discussion in Hansen

and Sargent (1993) suggests that cross-frequency restrictions matter for decomposing aggre-

gate time series into trend and cycle. Cross-frequency restrictions are about co-movement, say,

in the trend and cycle of aggregate output. Morley, Nelson, and Zivot (2003) make this point by

estimating the correlation of the innovations to τ and εt , ϱη,υ, in their UC model. Only when

they estimate
∣∣ϱη,υ∣∣ < 1 does the UC model produce a BN trend that dominates fluctuations

in U.S. output. Similarly, Gregory and Smith (1996) report that the evaluation of RBC theory

is sensitive to assumptions about the DGP of the trend in the sample data. Kulish and Pagan

(2019) make a related point, but instead focus on the persistence of the cyclical component of

aggregate data.

Another approach to the Canova-Burnside debate is to study the impact different filters

have on tests of DSGE models. As the debate reveals, proponents of the Hodrick-Prescott filter

have never accepted this as a legitimate criticism. Nonetheless, the Canova-Burnside debate is

about whether some methods of separating trend from cycle may reduce the power of tests

of business cycle theory. The notion of power is the effect the procedure that decomposes

trend and cycle has on the ability of an econometrician to distinguish between competing DSGE

models conditional on moments of the sample data. A way to avoid this problem is to construct

tests that are invariant to linear filters. Gregory and Smith (1990, 1991, 1996), Sims (1996), and

Kehoe (2007) advocate this approach. It is implemented by Cogley and Nason (1993, 1995a),
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Nason and Cogley (1994), Nason and Rogers (2006), Canova and Ferroni (2011), and Kano and

Nason (2014), among others. The next section studies a canonical RBC model as a prelude to

testing DSGE models using methods invariant to linear filtering.

3. Calibrating, Linearizing, and Solving a RBC Model

The idea of RBC theory dates from the time-to-build paper by Kydland and Prescott (1982). How-

ever, the notion of imposing a rational expectations equilibrium (REE) concept on a stochastic

growth model to study business cycle fluctuations can be traced to Brock (1974). From the

perspective of the history of macroeconomics, the explosion of RBC papers in the latter half of

the 1980s and first half of the 1990s is attributed to an idea at the right place at the right time.

The appeal of RBC theory is the way in which it connects theory to data. RBC theory

explains business cycle fluctuations by propagating exogenous shocks through the interaction

of the primitives of an economy, which are, for example, preferences, technology, and market

structure. This is not a new idea. Slutsky (1937) shows that summing sequences of white

noise random deviates (i.e., innovations to productivity shocks) generates serially correlated

time series. Frisch (1933) develops the notion that white noise shocks can generate impulse

response dynamics given propagation mechanisms grounded in economic theory. A strength

of RBC theory is that it is explicit about the way the business cycle propagation mechanism

operates. This allows for a thorough examination of its ability to match moments of the data.

This raises the issue of which data to match. Initially, the RBC literature stressed the

ratio of standard deviations and contemporaneous correlations between output, consumption,

investment, labor input (either hours worked, employment, or some combination of the two),

and average labor productivity (the real wage in a one-sector growth model), but Kydland and

Prescott (1982) is a notable exception. Hence, RBC theory emphasized the relative volatility

and contemporaneous co-movement aspects of business cycle fluctuations. Later waves of

research took the dynamics of RBC models seriously. This work confronts RBC theory directly
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with observed business cycle persistence and dynamic co-movement.

To summarize, RBC theory consists of set of methods and tools to

(
i
)

construct dynamic stochastic general equilibrium (DSGE) models to compute

theoretical business cycle moments,

(ii) measures sample business cycle fluctuations identical to the way theoretical

moments are, and

(iii) tests theories against the sample data.

This summary suggests there is an econometric interpretation of RBC theory. The econometric

interpretation views DSGE models as restricted DGPs. A DSGE model places theoretical (and

possibly arbitrary) restrictions on the multivariate probability distribution process that gener-

ates, say, output, consumption, investment, and employment. The restrictions use economic

theory to organize the information and data the real world offers to evaluate DSGE models.

Quite often proponents of RBC theory will make the statement, “All models are false. But it

takes a model to beat a model.” Since a RBC model is an abstraction of the aggregate economy,

along some dimension the data will reject the model. That is not a powerful statement. A

powerful statement, as well as statement of science, is that when the data rejects the RBC

model, something is discovered about the data and RBC theory. The scientific process involves

making this discovery the motivation for the next model to be studied. Hence, tests of RBC

theory can be thought of specification searches across classes of falsifiable models to learn

about the sources, causes, and propagation mechanisms of business cycles. Rather than an

attempt to make meta-statements about the sources and causes of business cycles, RBC theory

is a process of learning about the ability of DSGE models to match moments in the data.

3.a A Canonical RBC Model

Kydland and Prescott (1982) put together a RBC model that contains time to build in capital

accumulation, habit formation in leisure, and signal extraction in the fundamental shocks. A
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reason that Kydland and Prescott becomes so important is that they claim their DSGE model

mimics much of the behavior of the U.S. business cycle. This surprises some economists,

especially Keynesian and New Keynesian economists. The moments of the U.S. business cycle

Kydland and Prescott cannot capture are found in the labor market. For example, Kydland

and Prescott’s time to build model fails to match the volatility of employment (relative to

output) over the cycle and the contemporaneous co-movement of average labor product and

employment. Much of the first wave of RBC literature is concerned with matching these labor

market moments over the business cycle.

Rather than work with this complex structure, a much simpler RBC model is constructed

below. It is a single consumption good one-sector growth model that includes final goods and

household sectors and a government. The goal is to study the business cycle properties of

the model. The optimality conditions of the RBC model place restrictions on the equilibrium

path of the economy. Study of the implications of the restrictions for moments of the business

cycle requires specification of the economic primitives, which are preferences and technology

in this RBC model (because all markets are assumed perfectly competitive). Once utility and

production functions have been chosen, parameters values have to be selected. This is the

process of calibration and is connected to computation of the steady state. With the RBC

model calibrated and the steady state defined, a numerical solution can be computed.

3.a.i The Final Goods Sector

The final goods sector consists of many identical firms that have access to a constant returns to

scale (CRS) technology in capital, Kt , and labor,Nt , driven by labor augmenting technical change

At common to all firms. Output, Yt , is produced with this technology Yt = F
(
Kt, AtNt

)
. For

the moment, treat At as an exogenous, but not yet specified total factor productivity (TFP)

shock. The TFP shock is observed at the beginning of date t. The CRS production technology

has standard restrictions, which are FK
(
·, ·
)
> 0, FKK

(
·, ·
)
< 0, FN

(
·, ·
)
> 0, FNN

(
·, ·
)
< 0,

plus the Inada conditions limz→0Fz = ∞ and limz→∞Fz = 0, where z = K, N .
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The static profit maximization problem of the representative firm is

Πt = MaxKt , Nt
[
Yt − rtKt − wtNt

]
, (3.1)

where Πt , rt , and wt denote firm profits, the real rental rate of capital, and the real wage (both

in units of consumption). The first-order necessary conditions (FONCs) are

rt = FK
(
Kt, AtNt

)
and wt = FN

(
Kt, AtNt

)
At. (3.2)

The real rental rate of capital equals the marginal product of capital and the marginal product

of labor is the real wage. These (relative) prices and the CRS technology yield zero equilibrium

profits for the firm.

3.a.ii The Household Sector

Households take an address, ȷ, on the unit interval and possesses the period utility function

U
(
ct, ℓt

)
, where ct and ℓt are consumption and leisure. The restrictions on period utility

are Uc (·, ·) > 0, Ucc (·, ·) < 0, Uℓ (·, ·) > 0, Uℓℓ (·, ·) < 0, along with the Inada conditions

limz−→0Uz = ∞ and limz−→∞Uz = 0, where z = c, ℓ. Households are endowed with one unit of

time during each date t that is split between leisure and labor supply, ht , 1 = ℓt + ht . The ȷth

household faces the budget constraint

wt
(
ȷ
)
ht
(
ȷ
)
+ rtkt

(
ȷ
)
+ bt

(
ȷ
)
+ Πt(ȷ) − Tt = ct

(
ȷ
)
+ xt

(
ȷ
)
+ qtbt+1

(
ȷ
)
, (3.3)

where xt is investment, qt is the price households pay to purchase unit discount bonds bt+1
(
ȷ
)
,

and Tt is a lump sum tax the government levies on all households. The law of motion of capital

kt+1
(
ȷ
)
= xt

(
ȷ
)
+ (1 − δ)kt

(
ȷ
)
, δ ∈

(
0, 1

)
, (3.4)

sums investment and the capital that remains subsequent to its depreciation created by pro-

duction. The household is able without cost to transform the single consumption into capital

and reverse the process (i.e., a putty-putty world).
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The household is forward looking when maximizing its expected lifetime utility

Et


∞∑
t=0

βtU
(
ct
(
ȷ
)
, ℓt

(
ȷ
)) , β ∈

(
0, 1

)
,

subject to the budget constraint (3.3) and the law of motion of capital (3.4), given k0. The

mathematical expectations operator, Et{·}, condition on date t information. The information

set includes the history of the exogenous shocks and endogenous prices up to and including

their date t realizations.

There are several approaches to solve this maximization problem. It is best to leave dis-

cussion of these important methods to Stokey and Lucas (1989), Malliaris and Brock (1998),

Ljungqvist and Sargent (2012), and Kursell (2014). Some knowledge of these methods will be

assumed in the remainder of these notes. In this example, the calculus of variation is applied

to the dynamic Lagrange problem of the household

L t = Et

{ ∞∑
j=0

βt+jU
(
ct+j

(
ȷ
)
, 1− ht+j

(
ȷ
))
+

∞∑
j=0

λt+j

[
wt+jht+j

(
ȷ
)
+ bt+j

(
ȷ
)
+ Πt+j(ȷ)

− Tt+j −
[
ci,t+j + ki,t+j+1 −

(
rt+j + 1 − δ

)
ki,t+j + qt+jbi,t+j+1

]]}
,

where λt is the Lagrange multiplier or shadow price of one unit of the consumption good. The

household maximizes the value of its lifetime utility program through the choice of uncertain

streams of consumption, labor supply, capital, and bonds. The FONCs with respect to ct
(
j
)
,

ht
(
ȷ
)
, kt+1

(
ȷ
)
, and bt+1

(
ȷ
)

are

βtUc,ȷ,t − λt = 0, (3.5)

−βtUℓ,ȷ,t + λtwt = 0, (3.6)
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−βtUc,ȷ,t + Et
{
λt+1

[
rt+1 +

(
1− δ

)]}
= 0, (3.7)

and

−qtβtUc,ȷ,t + Etλt+1 = 0, (3.8)

respectively, where for example Uc,ȷ,t ≡ Uc
(
ct
(
ȷ
)
, ℓt

(
ȷ
))

.

The FONC have standard interpretations. Equation (3.5) states the Lagrange multiplier

equals the marginal utility of consumption discounted back to date zero. The value of an

additional unit of consumption is its value in utils. The marginal utility of leisure equals the

value an extra unit of labor income yields to the household. The combination of these two

FONC produces the intratemporal optimality condition

wt =
Uℓ,ȷ,t
Uc,ȷ,t

. (3.9)

Optimal consumption and labor supply choices leads the household to set its marginal rate of

substitution between leisure and consumption equal to the real wage.

The intertemporal FONC (3.7) describes the trade-off the household faces when it post-

pones current consumption and holds additional capital. Current utility is lower by the drop

in consumption, Uc,t = λt
/
βt , where the household address ȷ is dropped from the subscript

of the marginal utility of consumption. The shadow price of a unit of the consumption good

and the discount factor is common across households. The discounted marginal utility of con-

sumption equals the expected discounted value, in utils, of the date t + 1 rental income from

capital, rt+1, plus the fraction of the additional capital that remains after production, 1 − δ.

Rewrite the intertemporal FONC (3.7) as the Euler equation

Uc,t = βEt
{
Uc,t+1

[
rt+1 + (1− δ)

]}
. (3.10)
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A similar argument generates the Euler equation for bonds

qtUc,t = βEtUc,t+1. (3.11)

The cost to the household of buying a unit discount bond today, qt , valued at Uc,t equals the

discounted expected benefit of the bond in the form of the additional discounted utils a unit

of consumption is anticipated to bring the household next period. This optimality condition

defines the pricing kernel or stochastic discount factor, βEt
{
Uc,t+1

/
Uc,t

}
, which is the rate at

which the household is willing to substitute consumption intertemporally.

The transversality condition

lim
j−→∞

βjEt
{
Uc,t+j Kt+j

}
= 0,

is the sufficient condition for an equilibrium to exist for this RBC model. The household cannot

be better off holding an extra unit of capital forever. Eventually, the household can only improve

its welfare by consuming the capital. Establishing necessary conditions involves more analysis,

which is left for Stokey and Lucas (1989), Ljungqvist and Sargent (2012), and Kursell (2014).

3.a.iii The Government

The government does not issue nominal liabilities (i.e., money, treasury bills, and/or bonds).

Period by period the government spends Gt units of the consumption good that is assumed to

have no impact on the economy. Government spending is a stochastic process that is realized

at the beginning of date t, which implies it is unknown by all participants in the economy at

earlier dates. Since the government must obey its budget constraint, it follows that Tt = Gt .

The government’s primary budget is in balance period by period.

3.a.iv Market Clearing, Equilibrium, and Optimality

The three sectors of the economy are tied together by equilibrium conditions. These conditions
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define market clearing in the labor, capital, bond, and goods markets, which are

Labor: Nt = Ht, Ht ≡
∫ 1

0
ht
(
ȷ
)
di, for wt > 0, otherwise wt = 0,

Capital: Kt = kt, kt ≡
∫ 1

0
kt
(
ȷ
)
di, for rt > 0, otherwise rt = 0,

Bond: Bt+1 = 0, Bt+1 ≡
∫ 1

0
bt+1

(
ȷ
)
di, for qt > 0, otherwise qt = 0,

and

Goods: Yt = Ct + Xt + Gt, Ct ≡
∫ 1

0
ct
(
ȷ
)
di and Xt ≡

∫ 1

0
xt
(
ȷ
)
di.

Labor, capital, and bond market clearing and the firm’s and household optimality conditions

implies optimality in general equilibrium

FN
(
Kt, AtNt

)
At =

Uℓ
(
Ct, 1−Nt

)
Uc(Ct, 1−Nt)

, (3.12)

1 = βEt

{[
Uc

(
Ct+1, 1−Nt+1

)
Uc

(
Ct, 1−Nt

) ][
FK

(
Kt+1, At+1Nt+1

)
+
(
1 − δ

)]}
, (3.13)

and

qt = βEt

{
Uc

(
Ct+1, 1−Nt+1

)
Uc

(
Ct, 1−Nt

) }
, (3.14)

respectively. Only three optimality are needed because goods market clearing follows by ap-

plying the other three market clearing rules (a result of Walrus’ law), equilibrium profits, and

the government’s budget constraint to the household’s budget constraint (3.3).

Optimality in general equilibrium describes the behavior of the aggregate economy. In

the labor market, the intratemporal optimality condition (3.12) sets the marginal product of

aggregate labor input equal to the marginal rate of substitution between leisure and consump-

tion in the household sector. The Euler equation (3.13) restricts the intertemporal equilibrium
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path of the aggregate economy. Optimality for the aggregate economy requires the value of

one unit of the consumption-capital good today to equal the discounted expected value that

good generates in production at date t + 1. The value is measured at the the marginal rate of

substitution of Ct for Ct+1. The final aggregate optimality condition (3.14) prices this marginal

rate of substitution in the bond market. It is the non-state contingent price of a one unit of the

consumption good at date t + 1.

3.b A Note on a Rational Expectations Equilibrium

The RBC model needs an equilibrium definition to account for its characteristics. First, observe

that households know nothing about the decision making process of the firm. All households

observe are the relative prices
{
wt, rt, qt

}∞
t=0 called out by the Walrasian auctioneers in the

perfectly competitive labor, capital, and bond markets. Given these prices and Gt , households

supply ht and kt to the labor and goods market. The supplies of ht and kt are upward sloping

functions ofwt and rt . Likewise, the firm demands Nt and Kt when faced withwt and rt , given

the realization of At . These demand schedules are downward sloping in the relative prices.

The important point is that all economic agents take relative prices and exogenous shocks

as given when making optimal decisions in this RBC model with perfectly competitive markets.

The more subtle point is that agents view these endogenous and exogenous objects as being

drawn from a multivariate probability distribution. For the equilibrium of a RBC model to be

well posed, the subjective beliefs economic agents possess about this multivariate probability

distribution must match the true process. This is the fundamental idea of a REE.

Definition: A REE requires the subjective beliefs the representative household and

the typical firm hold about the stochastic process

Z∞t=0 =
{
At, Gt, wt, rt, qt

}∞
t=0 ,

and the optimal choices
{
ct, ht, kt+1, Bt+1

}∞
t=0 by the representative household
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and
{
Kt, Nt

}∞
t=0 by the typical firm satisfy the labor, capital, bonds, and goods mar-

ket clearing conditions. Since these choices by households and firms reflect their

subjective beliefs over the stochastic process Z∞t=0, a REE require these subjective

beliefs to match the true stochastic process that generates Z∞t=0.

The definition of a REE does not state that agents have complete information about all aspects

of the economy. Agents need know only the information required to solve optimally their con-

strained maximization (or minimization) problems. For example, the household and firm know

conditional moments of the multivariate stochastic process that produce At and Gt . Hence the

definition of a REE does not state that agents predict with perfection At , Gt , wt , rt , and qt

period by period. Instead, agents forecast “perfectly only on average”. These are predictions

of conditional moments, which gives a REE the flavor of a probability statement. There is also

no claim that within a REE the forecast errors of agents are unpredictable. Suppose an econo-

metrician had access to the expectations of agents generated within a REE. If tests show these

expectations yield persistent forecast errors, this is evidence the forecasting model invoked

by the econometrician produces inefficient predictions. This is a test of forecast efficiency not

RE. The RE of agents exist within the context of a DSGE model in which they operate; see Muth

(1961) and Lucas (1987).

3.c Specification of Model Primitives

A calibration depends on the specification of the primitives of preferences and technology.

Assume the period utility function of the typical household has constant relative risk aversion

and is non-separable in consumption and leisure

U
(
Ct, 1−Nt

)
=

[
Cφt

(
1−Nt

)1−φ]1−α

1 − α , (3.15)

which restricts α ≠ 1. In the case of α = 1, the period utility function is additively separable
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in consumption and leisure

U
(
Ct, 1−Nt

)
= φ ln

[
Ct
]
+ (1 − φ) ln

[
1−Nt

]
, (3.16)

when α = 1 and in either case φ ∈
(
0, 1

)
. The CRS production technology is Cobb-Douglas

Yt = Kθt
(
At Nt

)(1−θ)
, θ ∈

(
0, 1

)
. (3.17)

Labor augmenting technology change could be either a linear deterministic trend in time

lnAt = γt + lnat, 0 < γ, (3.18)

or a stochastic random walk (with drift) trend process

lnat = lnat−1 + εt, εt ∼ N
(
0, σ2

ε

)
. (3.19)

The deterministic trend, γ, represents the deterministic trend rate of the growth of the econ-

omy. Stochastic growth is generated by the innovation εt of the random walk (3.19). It produces

a permanent or trend effect because its impact on lnAt never dies out.

The last bit of the model to specify is the exogenous government spending shock Gt . No

matter if a deterministic trend or a stochastic trend drives the economy, the transitory shock

to government spending, gt , equals Gt
/
Yt . Variation in the transitory component of govern-

ment spending is around the government spending-output ratio. The transitory component of

government spending is assumed to be a first-order autoregression

lngt =
(
1− ρg) lng∗ + ρg lngt−1 + ηt,

∣∣ρg∣∣ < 1, ηt ∼ N
(
0, σ2

η

)
, (3.20)

where g∗ is the steady state or (population) mean value of the government spending-output

ratio. Innovations to technology and government spending are uncorrelated at all leads and

lags, Et
{
εt+j ηt+s

}
= 0, for all j, s.
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3.d Stochastic Detrending and Calibration

Calibration starts by endowing the RBC model with a process for labor augmenting technol-

ogy. When At follows the random walk with drift process (3.19), the aggregate quantities are

stochastic detrending as

K̂t+1 = Kt+1

At
and Ẑt =

Zt
At
, where Z = Y , C, andX.

The RBC model has a balanced growth path because the stochastic trend At is common to

the aggregates Yt , Ct , Xt , Gt , and Kt+1. Using the one-sector stochastic growth model to

evaluate RBC theory is conditional on the maintained assumption that TFP is a random walk

with drift. This is not necessarily an innocuous assumption. Canova and Ferroni (2011) argue

that measurement error in the data and potential model misspecification, which includes the

choice of the process generating TFP, can produce biased estimates of the theoretical business

cycle moments obtained from a DSGE model.

Nonetheless, applying stochastic trending to the production technology (3.17) and the

aggregate resource constraint creates

(
1 − gt

)
Ŷt =

(
1 − gt

)
exp

{
−θ
(
γ + εt

)}
K̂θt N

1−θ
t = Ĉt + X̂t, (3.21)

The law of motion of the capital stock is altered by stochastic detrending

K̂t+1 =
(
1 − δ

)
exp

{
γ + εt

} K̂t + X̂t. (3.22)

When period utility is (3.16), the optimality conditions (3.12), (3.13) and (3.14) become

(
1 − θ

)
exp

{
−θ

(
γ + εt

)}
K̂θt N

−θ
t = (1 − θ) Ŷt

Nt
=
(

1 − φ
φ

)
Ĉt

1 − Nt
, (3.23)
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1 = βEt


(
Ĉt+1

Ĉt

)−1 [
θ exp

{
−θ

(
γ + εt+1

)}
K̂θ−1
t+1 N

1−θ
t+1 + 1 − δ

exp
{
γ + εt+1

}]


= βEt


(
Ĉt+1

Ĉt

)−1 [
θ
Ŷt+1

K̂t+1
+ 1 − δ

exp
{
γ + εt+1

}]
 , (3.24)

and

qt = βEt

exp
{
−
(
γ + εt+1

)}( Ĉt+1

Ĉt

)−1
 , (3.25)

respectively.

The next step imposes the steady state, Z∗ = Z̃t and N∗ = Nt , for all dates t, on the

stochastically detrended equilibrium and optimality conditions (3.21)–(3.25). Some algebra

yields

X∗

Y∗
= 1 − C

∗

Y∗
− g∗, (3.26)

X∗

K∗
= γ∗ − (1 − δ)

γ∗
, γ∗ ≡ exp

{
γ
}
, (3.27)

C∗

Y∗
= φ(1 − θ)

1 − φ

(
1 − N∗
N∗

)
, (3.28)

K∗

Y∗
= βγ∗θ
γ∗ − β(1 − δ), (3.29)

and

q∗ = β
γ∗
, (3.30)

respectively.
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The steady state system is recursive for this RBC model. Assuming the parameters and

N∗ are known, the steady state ratios in the capital and goods markets, X∗
/
K∗, C∗

/
Y∗, and

K∗
/
Y∗ are constructed using equations (3.27), (3.28), and (3.29). The first and third of these

steady state ratios are used to compute X∗
/
Y∗. As a result, g∗ is calculated in equation (3.26).

Once the steady state ratios are computed, rearranging the steady state production technology

(3.17) gives the steady state capital stock

K∗ =
[

exp{−θγ}K
∗

Y∗

]1
/
(1−θ

)
N∗, (3.31)

from which the steady state levels of output, consumption, investment and government spend-

ing can be constructed using the steady state ratios.

A problem is the RBC model parameters are unknown. A calibration of the RBC model

splits its parameter between those that have direct sample counterparts and those related to the

theoretical moments restricted by the steady state equations (3.26)–(3.31). The deterministic

growth rate of the economy, γ, the standard deviation of technology growth, σε, the AR(1)

coefficient of gt , its mean, and its standard deviation, ση, are directly observed in the data. A

productivity accounting exercise is used to produce a time series of At . The national income

accounts of the OECD economies contain the needed real GDP, capital stock, and labor input

data. Likewise, a time series for government spending is available to compute the coefficients

of the AR(1) of gt . For Canada and the U.S., this exercise produces

Table 1. Several Calibrated Parameters of the RBC Model

γ σε g∗ ρg ση

Canada 0.00242 0.01199 0.23262 0.97383 0.01268

U.S. 0.00362 0.00947 0.18088 0.99062 0.01056

on a quarterly sample from 1965Q 1 to 1997Q 4.

This leaves θ, δ, β, and φ to choose. The steady state or population mean share of
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capital in aggregate income or output is equivalent to θ. The national income accounts of

industrialized economies usual put this share between 30 to 40 percent. The value of the

other technology parameter, δ, is determined from the observation that the annual average

depreciation rate of the private fixed capital is somewhere between 7.5 and 10 percent. A

sensible quarterly depreciation rate is 0.02 in light of this observation. Often, the subjective

rate of time preference is calibrated to the sample mean of a (nearly) riskless asset such as

three-month treasury bills. Steady state in the bond market then sets β = γ∗q∗ from the

optimality condition (3.30). Given q∗ equals 0.99105 and 0.99254 for Canada and the U.S., β

equals 0.99345 and 0.99494, respectively. It is also legitimate to simply select a value of β, say,

0.995, which implies q∗ given γ.

All that remains is to calibrate φ. The steady state optimality condition (3.28), which

calculates the steady state consumption-output ratio, is a nonlinear function of θ, φ, and N∗.

Since the steady state is short one optimality (or equilibrium) condition, a choice must be

made. A common choice is to calibrate N∗ to sample observations. For example, the steady

state employment rates in Canada and the U.S. are 0.42074 and 0.43035. Given this, φ can

be calibrated by setting the steady state consumption-output ratio to its sample average to

solve the steady state labor market optimality condition (3.28). This yields φ equal to 0.37163

(0.40756) for Canada (the U.S.). Or φ can be calibrated to microeconometric estimates of labor

supply, as in Kimmel and Kniesner (1998).

There are competing views of what calibration is and how it should be done. Prescott

(1986) presents a fully worked out philosophy of calibrating RBC models. King, Plosser, and

Rebelo (2002) is the technical appendix to King, Plosser, and Rebelo (1988a, 1988b), which were

influential papers in the early RBC literature. Gregory and Smith (1990, 1991, 1996) and Wat-

son (1993) view calibration experiments as econometric exercises aimed at estimation and/or

testing DSGE models. A good source to learn about different philosophies of and strategies for

calibration is the debate between Kydland and Prescott (1996), Hansen and Heckman (1996),
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and Sims (1996). Kehoe (2007) argues the approach described by Sims is useful for judging

whether DSGE models can replicate conditional dynamic moments of data. Canova (1994), De-

Jong, Ingram, and Whiteman (1996), and Geweke (2010) develop Bayesian calibration methods.

Prior predictive analysis is enlarged upon by Canova, Faust and Gupta (2010) engage posterior

predictive analysis, and DeJong, Ingram, and Whiteman and Geweke employ, what Geweke’s

labels, the minimal econometric interpretation of DSGE models. Kano and Nason (2014) adapt

the latter methods to assess the fit of new Keynesian DSGE models to sample spectral densities

of sample consumption and output growth.

3.e Linearizing and Solving the RBC Model

Linearization methods construct decision rules for the endogenous state variables, given the

calibration is complete and steady state is calculated. There are more than a few linearization

methods available in macroeconomics. Among these are methods to solve linear RE models

developed by Zadrozny (1998), King and Watson (1998, 2002), Klein (2000), and Sims (2001).

Their essentials are all the same. First, compute the eigenvalue and eigenvectors of the stable

roots of the endogenous state variables. Then construct the forward looking forecasts of the

exogenous state variables.

For the RBC model at hand, the lone endogenous state variable is K̂t+1. These notes use a

numerical solution method that conjectures its log linear approximate decision rule

K̃t+1 = µKK̃t + µV Ṽt, (3.32)

where the goal is to compute the unknown coefficients, µK and µV , K̃t+1 = ln K̂t+1 − lnK∗,

and Ṽt =
[
εt g̃t

]′. The conjectured solution is written in terms of deviations from the steady

state. Hence, the solution captures the transition path of stochastically detrended capital to

its steady state in response to innovations to technology and government spending shocks.

Zadrozny (1998) provides a solution for the scalar µK and the one-by-two matrix µZ .

Adapting this solution algorithm to the log linear approximate decision rule (3.32) employs the
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method of undetermined coefficients. It relies on taking first-order Taylor expansions around

the (log of the) steady state of the optimality and equilibrium conditions (3.21)–(3.24).

The system of control equations is produced by linearizing the stochastically detrended

aggregate resource constraint and the intratemporal labor market optimality condition (3.23).

First, substitute for X̂t in (3.21) with (3.22) and construct its linear approximation

θK̃t +
(
1− θ

)
Ñt − θεt −

(
g∗

1− g∗

)
g̃t = YC C̃t + Y1,KK̃t+1 + YKK̃t + Yεεt, (3.33)

where YC = C∗
/
Y∗, Y1K = K∗

/
Y∗, YK = −

(
1− δ

)
Y1K

/
γ∗, and Yε = −YK . A similar operation

on the intratemporal labor market optimality condition (3.23) yields

θK̃t − θÑt − θεt = C̃t +
(

N∗

1 − N∗
)
Ñt. (3.34)

The linearized equations (3.33) and (3.34) form the matrix system in the control variables C̃t

and Ñt . The system is


YC −(1− θ)

1 θ + N∗
1 − N∗




C̃t

Ñt

 =


−Y1,K

0

 K̃t+1 +


θ − YK

θ

 K̃t

+


−(θ + Yε) − g∗

1 − g∗

−θ 0




εt

g̃t

 .

Define W̃t =
[
C̃t Ñt

]′
to write the control system as

W̃t = W1,KK̃t+1 + WKK̃t + WV Ṽt, (3.35)

where Ṽt+1 = ρV Ṽt + et+1, ρV is a 2×2 matrix full of zeros expect ρg resides in its
(
2, 2

)
39



position and et =
[
εt ηt

]′.
The final optimality condition to be linearized is the stochastically detrended Euler equa-

tion of capital (3.24)

C̃t = Et
{
C̃t+1 + K1,KK̃t+1 + K1,NÑt+1 + K1,εεt+1

}
, (3.36)

where K1,K = (1 − θ)KK , K1,N = −K1,K , K1,ε = θKK + β−1
(
1 − δ

)/
γ∗, and KK = β−1θ

/
Y1K .

Combining the linearized control system (3.35) and linearized Euler equation (3.36) results in

K1,KK̃t+1 =
[
−1 −K1,N

]
EtW̃t+1 +

[
1 0

]
W̃t +

[
−K1,ε 0

]
EtṼt+1,

which is a second-order stochastic difference equation with first-order moving average shocks

as shown in

K1,WW1,KEtK̃t+2 +
[
K1,WWK + KWW1,K − K1,K

]
K̃t+1 + KWWKK̃t

= −
[
K1,WWV + K1,V

]
EtṼt+1 − KWWV Ṽt,

where K1,W =
[
−1 −K1,N

]
, KW =

[
1 0

]
, and K1,V =

[
−K1,ε 0

]
. Next, substitute for K̃t+2

and K̃t+1 with the conjectured decision rule (3.32) to obtain

[
K2 µ

2
K + K1 µK + K0

]
K̃t =

[
V0 − V1µV −

(
K1,WWK

)
µVρV

]
Ṽt, (3.37)

where K2 = K1,WW1,K , K1 = K1,WWK + KWW1,K − K1,K , K0 = KWWK , V0 = −KWWV −(
K1,V + K1,WWV

)
ρV , V1 = K1,WW1,KµK + K1,WWK + KWW1,K − K1,K . The polynomial coeffi-

cients on the right and left hand sides of the linearized equilibrium condition (3.37) represent

zero conditions. These zero conditions are univariate, 0 = K2µ
2
K + K1µK + K0 and bivariate

02×1 = V0 − V1µV −
(
K1,WWK

)
µVρV for (3.37) to be in equilibrium for the linearized RBC
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model, the dimensions of the zero conditions of the endogenous and exogenous states have

the same dimensions of the endogenous state vector and the exogenous state vector.

The polynomial operator of K̃t in (3.37) is a second-order AR in the zero condition

K(µK) = K2µ2
K + K1µK + K0. (3.38)

Since the endogenous state vector of the RBC model is a scalar, K̃t , the polynomial coefficients

are also scalars. An implication is the zero of equation (3.38) can be written in companion form


K2 0

0 1




K̃t+2

K̃t+1

 =


−K1 −K0

1 0




K̃t+1

K̃t

 .

The solution of the zero condition of the state are the eigenvalues of

Q =


K2 0

0 1



−1 
−K1 −K0

1 0

 .

The eigenvalues exist and are either distinct and real or complex conjugates because Q is non-

singular; see theorem 2 of Zadrozny (1998). The textbook algorithm to solve for its eigenvalues

and eigenvectors is the Jordan decomposition, but modern computational software employ

more sophisticated decomposition procedures. These algorithms are more efficient in the case

of a RBC model that has a multivariate vector endogenous state vector. IfQ is not full rank (i.e.,

singular), theorem 3 of Zadrozny (1998) gives necessary conditions for a unique solution to the

second-order polynomial AR in the zero conditionK(µK). King and Watson (1998, 2002), Klein

(2000), and Sims (2001) also provide solution methods to solve linearized DSGE models in the

case of a singular leading matrix in the AR process of the endogenous states.
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Zadrozny (1998) discusses another method to solve for the zero of the AR of K̃t . The

method constructs the implied second-order polynomial of K(µK) in equation (3.38). The

polynomial can be written and factored into the second-order difference equation

K
(
L
)
=
(
1 − ξ1L

)(
1 − ξ2L

)
= K0

[
1 + K1

K0
L + K2

K0
L2
]
.

This implies K1
/
K0 = −

(
ξ1 + ξ2

)
and K2

/
K0 = ξ1ξ2. The combination of the two equations

is the implicit function K
(
ξ1
)
= ξ1 +

(
K2
/
K0
)
ξ−1

1 − K1
/
K0. Its FONC yields the solution

that minimizes K
(
ξ1
)
, ξ1 =

√
K2
/
K0.

These results are summarized in figure 8, which is adapted from Sargent (1987, p.202).

The parabola that K
(
ξ
)

represents achieves K1
/
K0 at ξ1, is minimized at

√
K2
/
K0, and at

ξ2 the parabola reaches K1
/
K0 once more. The parabola intersects a line of zero slope and

equalsK1
/
K0 at ξ1 and ξ2. Hence, the point of minimization ofK(ξ) produces strict inequality

restrictions on ξ1 and ξ2

0 < ξ1 <

√
K2

K0
<
√
β−1 and

√
K2

K0
< ξ2.

The polynomial K(L) has two roots (not necessarily distinct). The modulus of the root ξ1 is

in the open unit interval making it stable and backward-looking. The root ξ2 is explosive and

forward-looking because its modulus is greater than one and finite. Hence, the solution of

K
(
L
)

is

(
1 − ξ1L

)(
1 − K2

K0
ξ2L

)
= −ξ−1

2
K2

K0

(
1 − ξ1L

)(
1 − K0

K2
ξ−1

2 L−1
)

L.

It is useful to understand the stable root of K
(
L
)
, ξ1, is the stable eigenvalue of Q. The

implication is µK = ξ1, which is the stable root of the decision rule (3.32).

The solution of the zeros of the exogenous state vector Ṽt , the disturbances of the RBC
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model, requires some results from matrix algebra. Pass the vec operator through the zeros

02×1 = V0 − V1µV −
(
K1,WWK

)
µVρV

vec
(
0V
)
= vec

(
V0) −

[
I′2
O

V1

]
vec

(
µV ) −

[
ρ′V
O(

K1,WWK
)]
vec

(
µV
)
,

where the vec operators stacks the columns of a matrix on top of each one another moving

from left to right, vec
(
D1D2D3

)
=
[
D′3
⊗
D1
]
vec

(
D2
)
, where D1, D2, and D3 are conformable

and
⊗

is the Kronecker product. The two elements of µV are found by

vec
(
µV
)
=
([

I′2
O

V1

]
+
[
ρ′V
O(

K1,WWK
)])−1

vec
(
V0
)
,

where rearranging the left hand side of the equality produces the 2×2 impulse matrix of the

conjectured linear approximate decision rule of (3.32).

The next step computes the other endogenous variables of the economy. First, define S̃t+1

=
[
K̃t+1 εt+1 g̃t+1

]′
and ut+1 =

[
0 εt+1 ηt+1

]′
. The linear approximate decision rule of

(3.32) becomes the state space system

S̃t+1 =


µK µV

02×1 ρV

 S̃t + ut+1 = µSS̃t + ut+1. (3.39)

The control system (3.35) and the state space solution (3.39) yield

W̃t =
[(
W1,KµK + WK

) (
W1,KµV + WV

)]
S̃t = ΛW ,SS̃t. (3.40)

The remaining endogenous variables, which are investment and output, can added to the equi-

librium solution of the control system (3.40) by linearizing the law of motion of capital (3.22)

and the production technology or aggregate resources constraint (3.21).
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The theoretical moments of W̃t of the linearized approximation of the RBC model are

calculated with (3.39) and (3.40). The relative volatility and co-movement of the transitory

components of the control system are found in the cross-covariance function of W̃t

E
{
W̃tW̃t−j

}
= ΛW ,SE{S̃tS̃t−j}Λ′W ,S = ΛW ,SµSΣSΛ′W ,S,

where E
{
S̃tS̃t−j

}
= µjSE

{
S̃t−jS̃t−j

}
≡ µjSΣS by repeated substitution of the lags of (3.39) and

the solution of the covariance matrix of the state space equation ΣS = µSΣSµ′S + Σu is vec
(ΣS)

=
[
I4 − µS

⊗
µS
]−1

vec
(Σu). The theoretical responses of S̃t+1 and W̃t to the transitory tech-

nology and government spending shocks, εt+1 and g̃t+1, are the partial derivatives

∂S̃t+j
∂ut+1

= µj−1
S and

∂W̃t+j
∂ut+1

= ΛW ,Sµj−1
Z , (3.41)

because S̃t+j =
∑∞
i=0 µ

i
Sut+j−i. The partial derivatives of equations (3.41) are theoretical im-

pulse response functions (IRFs) of the transitory dynamics of K̃t+1, C̃t , and Ñt .

Similar analysis produces the bivariate transitory dynamics of Ỹt and C̃t . Begin by writing

the linearized budget constraint (3.33) as

Ỹt − YC C̃t = Y1,KK̃t+1 + YKK̃t + Yεεt +
(
g∗

1− g∗

)
g̃t,

where the linearized stochastically detrended output technology is Ỹt = θK̃t +
(
1−θ

)
Ñt − θεt .

It along with rewriting the linearized intratemporal labor market optimality condition (3.34) as

Ñt =
[

1−N∗
N∗ + θ

(
1−N∗

)](θK̃t − C̃t − θεt)

yields a second control equation in Ỹt and C̃t

Ỹt +
[ (

1− θ
)(

1−N∗
)

N∗ + θ
(
1−N∗

)] C̃t =
[

θ
N∗ + θ

(
1−N∗

)](K̃t − εt) .
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Define NN ≡
[
N∗ + θ

(
1−N∗

)]−1
to construct a linearized control system in Ỹt =

[
Ỹt C̃t

]′


1 −YC

1 θN

 Ỹt =


Y1,K

0

 K̃t+1 +


YK

θNN

 K̃t +


Yε
g∗

1 − g∗

−θNN 0




εt

g̃t

 .

where θN ≡
(
1− θ

)(
1−N∗

)
NN or in matrix form

Ỹt = Y1,KK̃t+1 + YKK̃t + YV Ṽt. (3.42)

The bivariate dynamics of Ỹt are studied by replacing the control system (3.40) with Ỹt =ΛY,SSt .
The analysis is performed by substituting Ỹt and ΛY,S into the theoretical cross-covariance

function formula and IRFs (3.41) for W̃t and ΛW ,S.
The theoretical IRFs (3.41) are not equivalent to IRFs produced by estimating a univariate

ARMA or a structural VAR on synthetic samples of ∆ lnYt or/and lnNt created by simulating

the linearized solution (3.39) and (3.40) of the RBC model. Cogley and Nason (1993) is an

example showing this for the dynamics of ∆ lnYt using a similar RBC model.

A structural VAR can be estimated on artificial samples by simulating the linearized so-

lution RBC model by restoring the stochastic trend to Ỹt and C̃t . Remember Z̃t = ln Ẑt − lnZ∗

and Ẑt = Zt
/
At , where Z = Y , C , and X. Using these facts leads to

Yt = Y∗ + ΛY,SS̃t + ΛY,Aτt (3.43)

where Yt =
[
lnYt lnCt

]′
, Y∗ =

[
lnY∗ lnC∗

]′
, ΛY,A = [1 1

]′
, and τt = lnAt . The log level of

the TFP shock is included in the system of state equations (3.39) by altering it to

T̃t+1 =


µK 0 µV

(
1, 2

)
0 1 0

0 0 ρg

 T̃t +

µV
(
1, 1

)
0

1 0

0 1

 et+1 = µT T̃t + µeet+1, (3.44)
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where T̃t+1 =
[
K̃t+1 τt+1 g̃t+1

]′
and, for example, µV

(
1, 1

)
is the first element of the row

vector µV . Simulating the state system (3.44) generates synthetic samples of T̃t+1. Feeding

these data into the control system (3.43) creates artificial samples of the levels of output and

consumption in Yt . Structural VARs estimated on artificial samples of Yt produce theoretical

IRFs of the linearized RBC model that can be compared to sample IRFs. Sims (1996) and Kehoe

(2007) argue these comparisons are useful for evaluating the dynamic fit of DSGE models to

actual data. Tools to choose consistent and efficient IRFs are developed by Hall et al (2012).

Cogley and Nason (1995b), Nason and Rogers (2006), and Kano and Nason (2014), among others,

implement this approach to evaluating DSGE models.
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Figure 1: The Log Level and Growth Rates of Per Capita Real GDP, 1948Q1–2019Q4

Notes: The top panel shows the log level of per capita real GDP. The middle panel display its quarter over quarter growth rate while

the bottom panel depicts year over year growth rates. Vertical gray bands denote NBER dated recessions.
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Figure 2: The Log Level and Growth Rates of the Chained Weighted GDP Deflator, 1948Q1–2019Q4

Notes: The top panel shows the log level of the chained weighted GDP deflator. The middle panel display its quarter over quarter

growth rate as a measure of inflation. The bottom panel depicts inflation using year over year growth rates of the GDP deflator. Vertical

gray bands denote NBER dated recessions.
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Figure 3: Bartlett and Bartlett Hanning Windows at Widths h = 7 and 21

Notes: The Bartlett and Bartlett-Hanning windows are constructed using the Julia package DSP.jl.
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Figure 4: Spectral Densities of Growth Rates of Per Capita Real GDP, 1948Q1–2019Q4

Notes: The top panel shows the spectral densities of per capita real GDP growth quarter over quarter and year over year. The bottom

panel display the spectral density of the second difference of the log of per capita real GDP. The Bartlett-Hanning window is used to

construct the smoothed spectral density with a window width of 11.
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Figure 5: Spectral Densities of Chained Weighted GDP Deflator Inflation, 1948Q1–2019Q4

Notes: The top panel shows the spectral densities of inflation computed quarter over quarter and year over year using the log level

of the chained weighted GDP deflator. The bottom panel display the spectral density of the first difference of chained weighted GDP

deflator inflation. The bottom panel depicts inflation using year over year growth rates of the GDP deflator. The Bartlett-Hanning

window is used to construct the smoothed spectral density with a window width of 11.
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Figure 5: Hodrick-Prescott, Baxter-King, and Hamilton Output Gaps, 1948Q1–2019Q4

Notes: The top panel displays the Hodrick-Prescott output gap for different values of the smoothing parameter λ along with linearly

detrended per capita real GDP growth quarter. Baxter-King output gap for different values of the lead-lag window width, κ appear in

the middle panel. The bottom panel contains the Hodrick-Prescott output gap for λ = 1600, the Baxter-King output cycle for κ = 12,

and the Hamilton output gap for and h = 8 and p = 4.
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Figure 6: Hodrick-Prescott, Baxter-King, and Hamilton Price Level Gaps, 1948Q1–2019Q4

Notes: The top panel displays the Hodrick-Prescott price level gap for different values of the smoothing parameter λ along with the

quadratic detrended chain weighted GDP price deflator. Baxter-King price gaps for different values of the lead-lag window width, κ
appear in the middle panel. The bottom panel contains the Hodrick-Prescott price level gap for λ = 1600, the Baxter-King price level

gap for κ = 12, and the Hamilton price level gap for and h = 8 and p = 4.
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Figure 7: Hodrick-Prescott, Baxter-King, and Hamilton Inflation Gaps, 1948Q1–2019Q4

Notes: The top panel displays the Hodrick-Prescott inflation gap for different values of the smoothing parameter λ along with linearly

detrended detrended chain weighted GDP price inflation. Baxter-King inflation gaps for different values of the lead-lag window width,

κ appear in the middle panel. The bottom panel contains the Hodrick-Prescott inflation gap for λ = 1600, the Baxter-King output gap

for κ = 12, and the Hamilton inflation gap for and h = 8 and p = 4.
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Figure 8: Solution to the Second-Order Polynomial K
(
L
)

Notes: The modulus of the stable root, ξ1, is on the open unit interval
(
0, 1

)
while for unstable root,

ξ2, it is in
(
1, ∞

)
. The household discount factor is β ∈

(
0, 1

)
. The coefficient on the first-order term

in K
(
L
)

is K1
/
K0 = −

(
ξ1 + ξ2

)
.
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