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What Makes a Macro Model Keynesian

▶ Since Keynes (1964, The General Theory of Employment, Interest, and Prices,
New York, NY: Harcourt, Brace, and World, Inc.), Keynesian economics argues
classical theory (i.e., all prices fully flexible) is valid only at the full employment
level of output.

▶ The important point to understand is that Keynes stood classical theory on its head.

1. Keynes altered the focus of (what we call macroeconomics) from the
determination of the price level to the determination of output
(or more accurately, aggregate demand).

2. Keynes accomplished this by assuming (implicitly) some price somewhere
does not adjust (i.e. is sticky) in the manner in which classical theory
predicts it should at the relevant business cycle horizon.

3. This assumption remains the fundamental debating point between
economists operating in the classical and Keynesian traditions today.

4. See Tobin (1980, Asset Accumulation and Economic Activity,
Chicago, IL: University of Chicago Press), Summers (1986, “Some
skeptical observations on real business cycle theory,” Quarterly
Review, Federal Reserve Bank of Minneapolis 10, 23–29), and

5. Prescott (1986, “Theory ahead of business cycle measurement,”
Quarterly Review, Federal Reserve Bank of Minneapolis 10, 9–22).
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What Makes a Keynesian Model New Keynesian

▶ Keynes (1964) and Summers (1986) are consistent with New Keynesian (NK) models.

1. Aggregate demand determination is at the heart of NK models.
2. Monopolistically competitive firms (households) supply output (labor services)

to meet demand, which is downward sloping.
3. =⇒ These firms (households) control the prices (nominal wages) of the goods

(labor services) they sell into the goods (labor) market.

▶ NK models are draped on the edifice of real business cycle (RBC) theory having these
features =⇒ start with a complete markets model; a good example is Devereux, Head,
and Lapham (1996, “Aggregate fluctuations with increasing returns to specialization
and scale,” Journal of Economic Dynamics and Control 20, 627–656).

▶ Discipline NK nominal stickiness with a story having micro-foundations =⇒ Calvo
(1983, “Staggered prices in a utility-maximizing framework,” Journal of Monetary
Economics 12, 383–398); for an alternative approach see Sims (1998, “Stickiness,”
Carnegie-Rochester Conference Series on Public Policy 49, 317–356).

1. Calvo staggered price (nominal wage) setting exists because only a fraction
1 − µP (1 − µW ) of monopolistically competitive final goods firms (households)
are able to set and commit to a new output price, PC,t (nominal wage, WC,t ),
between date t−1 and dates t =⇒ time-dependent staggered price setting.

2. The Calvo staggered price setting story is first integrated into a monetary DSGE
by Yun (1996, “Nominal rigidities, money supply endogeneity, and business
cycles,” Journal of Monetary Economics 37, 345–370).
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Introduction to NKDSGE Models

▶ Consider a NKDSGE model in which there are households, firms, a
government, and feature

1. real frictions: preferences display internal habit formation in consumption and
varying capital utilization and capital or investment adjustment are costly,

2. nominal frictions: prices and nominal wages are assumed sticky à la Calvo,

3. the economy grows along a stochastic balanced growth path created by TFP,
which is random walk (with drift) =⇒ the stochastic trend of the economy,

4. and a monetary authority endowed with a money growth or Taylor rule.

5. NKDSGE models lack complete markets because of the nominal stickiness not
these real frictions.
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NKDSGE Model Literature
▶ This medium scale NKDSGE model is similar to those estimated by

1. Del Negro and Schorfheide (2008, “Forming priors for DSGE models (and how
it affects the assessment of nominal rigidities),” JME 55, 1191–1208),

2. Del Negro, Schorfheide, Smets, and Wouters (2007, “On the fit and forecasting
performance of new Keynesian models,” JBES 25, 123–162),

3. Smets and Wouters (2007, “Shocks and frictions in US business cycles:
A Bayesian DSGE approach,” AER 97, 586–606),

4. CEE (2005, “Nominal rigidities and the dynamic effects of a shock to
monetary policy,” JPE 113, 1–45),

5. Smets and Wouters (2003, “An estimated stochastic dynamic general
equilibrium model of the Euro area,” JEEA 1, 1123–1175).

6. The dynamic responses of output and inflation to a monetary policy shock
mark the empirical success of NKDSGE models =⇒ few if any other classes
of DSGE models generate similar responses.

7. All except CEE add exogenous (i.e., preference, markup, and/or government
spending) shocks, which are often assumed to be AR(1)s processes.

▶ More recent surveys are
1. Fernández-Villáverde, Rubio-Ramírez, and Schorfheide (2016, “Solution and

estimation methods for DSGE models,” in Taylor and Uhlig (eds.), Handbook
of Macroeconomics, Amsterdam, The Netherlands: Elsevier) and

2. Lindé, Smets, and Wouters (2016, “Challenges for central banks’ macro
models,” in Taylor and Uhlig (eds.), Handbook of Macroeconomics,
Amsterdam, The Netherlands: Elsevier).
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Primitives: The Demand for Goods and Technology

▶ A continuum of monopolistically competitive firms produce final goods households
consume =⇒ firms and their differentiated goods have addresses j ∈ [0, 1].

1. The consumption aggregator is ct =
[∫ 1

0
yD,t(j)

ξ−1
ξ dj

] ξ
ξ−1

, where the price

elasticity is ξ > 1 and yD,t
(
j
)

is household final good demand for the output
of firm j; see Dixit and Stiglitz (1977, “Monopolistic competition and optimum
product diversity,” American Economic Review 67, 297–308).

2. The jth final good firm aims to meet this demand with its output, yt
(
j
)
,

by mixing efficiency units of capital, utKt
(
j
)
, rented and labor, Nt

(
j
)
,

hired from households net of fixed labor costs, N0, given
labor-augmenting TFP, At , in the CRS technology,

yt
(
j
)
=
[
utKt

(
j
)]ψ[(

Nt
(
j
)
−N0

)
At
]1−ψ

, ψ ∈
(
0, 1

)
,

3. where ut = capital utilization rate, ut ∈
(
0, 1

]
, and a fixed labor cost N0 > 0,

which is necessary for monopolistic competition in the final goods market.

4. For the NKDSGE model to have a permanent shock, TFP is a random walk

with drift, At = At−1 exp
{
α+ εt

}
, with its innovation, εt ∼ N

(
0, σ2

ε

)
.
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Primitives: Staggered Price Setting of Output, I

▶ Firm j maximizes profits by setting its price Pt
(
j
)
, s.t. YD,t =

[∫ 1

0
yD,t(j)

ξ−1
ξ dj

] ξ
ξ−1

=⇒ MaxyD,t
(
j
) ∫ 1

0
Pt
(
j
)
yD,t

(
j
)
dj + Pt

YD,t −
[∫ 1

0
yD,t(j)

ξ−1
ξ dj

] ξ
ξ−1

,

where YD,t ≡ ct is another way to express aggregate demand and Pt is the aggregate
price level, which firm j takes as given.

▶ The solution is the downward sloping demand schedule yD,t
(
j
)
=
[
Pt
Pt
(
j
) ]ξ YD,t

and the price index Pt =
[∫ 1

0
Pt
(
j
)1−ξ] 1

1−ξ
.

▶ The downward sloping demand schedule is used by firm j to set Pt
(
j
)

faced with
yD,t

(
j
)

taking Pt and YD,t as given.
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Primitives: Staggered Price Setting of Output, II

▶ Calvo-staggered price setting firms face time-dependent updating to the optimal
price PC,t at the probability 1−µP , or with probability µP , firms are stuck with Pt−1
scaled by lagged inflation, ςt−1.

1. =⇒ Defines the aggregator or law of motion of the aggregate price level

Pt =
[(

1− µP
)
P1−ξ
C,t + µP

(
πt−1Pt−1

)1−ξ] 1
1−ξ ,

2. where a firm unable to move to PC,t employs full indexation to lagged inflation,
πt−1, to adjust its price from date t−1 to date t.

3. Calvo staggered price setting =⇒ nominal rigidities arise because different firms
react differently to shocks at date t some of which cannot respond optimally
to these shocks until these firms are able to alter their prices in the future.

▶ Since profit maximization is equivalent to cost minimization for firm j

TCt
(
j
)
= RK,tKt

(
j
)
+ WtNt

(
j
)
.

where this firm’s total nominal cost TCt
(
j
)

is the sum of cost of factor inputs
evaluated at the nominal rental rate of capital, RK,t , and the nominal wage, Wt .

▶ Since final goods firms rent Kt
(
j
)

in a perfectly competitive spot markets,
1. RK,t = Φtψyt(j)/Kt(j), where Φt is the marginal cost of firm j during date t.
2. =⇒ Φt is the Lagrange multiplier attached to the production technology

of firm j, which is common to all final goods firms.
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Primitives: Staggered Price Setting of Output, III

▶ Although the labor market is monopolistic, the marginal product of labor is still

Wt = Φt(1−ψ)yt(j)/[Nt(j)−N0
]
.

▶ Exploit the CRS technology common to all firms and the FONCs of firm j to find
its total cost function TCt

(
j
)
= ΦtyD,j,t + WtN0 =⇒ the net profit function (in

real terms) of firm j

DF,t
(
j
)
=
(
Pt
(
j
)

Pt
− φt

)(
Pt
(
j
)

Pt

)−ξ
YD,t −

(
Wt
Pt

)
N0, φt ≡

Φt
Pt
. (NK.1)

▶ The consistency of the final goods price aggregator of Pt and its updating equation
motivates imposing symmetry on final goods firms, yD,t

(
i
)
= yD,t

(
j
)

for all i, j firms
1. =⇒ identify PC,t = Pt

(
j
)

for all final goods firms that are able to change and
commit to a new price at date t.

2. As a result the problem of maximizing the expected discounted value of any
firm’s net profit function (NK.1) becomes

Et


∞∑
i=0

(βµP )i λt+i

[( PC,t
Pt+i

− φt+i
)( PC,t

Pt+i

)−ξ
YD,t+i −

(
Wt+i
Pt+i

)
N0

] ,
3. where λt denotes the firm’s time-varying discount factor (i.e., the marginal

utility of consumption because households own the final goods firms).
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Primitives: Staggered Price Setting of Output, IV

▶ The problem of maximizing the firm’s discounted profit function yields the optimal
forward-looking inflation rate

Pc,t
Pt−1

=
(

ξ
ξ − 1

) Et

∞∑
i=0

(
βµP

)i
λt+iφt+iYD,t+i ς

ξ
t+i

Et

∞∑
i=0

(
βµP

)i
λt+iYD,t+i ς

ξ−1
t+i

, (NK.2)

1. Inflation is smoothed by equation (NK.2) because an infinite cost of adjustment
faces any firm unable to update its price to Pc,t =⇒ there is no amount these
firms can pay to optimally reset prices.

2. =⇒ Since prices or inflation do not adjust, shocks are propagated onto real
variables generating the potential for a monetary transmission mechanism.
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Primitives: Staggered Price Setting of Output, V

▶ Yun (1996) ties aggregate demand to aggregate supply, YA,t , to the supply price

aggregator, P−ξA,t ≡
∫ 1

0
Pt
(
j
)−ξdj, where its law of motion is

P−ξA,t =
(
1− µ

)
P−ξC,t + µ

(
πt−1PA,t−1

)−ξ .
1. Aggregate output, YA,t ≡

∫ 1

0
yA,t

(
j
)
dj, and the downward sloping demand

schedule for yD,t
(
j
)

set YD,t =
(
Pt
/
PA,t

)−ξ YA,t , which is a useful trick.

2. The trick is to eliminate PC,t from the state vector of the economy.
3. =⇒ Use the law of motion of PA,t to substitute for PC,t in the law of motion

or aggregator of Pt , which will leave only Pt and Pt−1 in the state vector.

▶ These facts yield aggregate real dividends

DF,t

Pt
=
(
1−ψφt

)( Pt
PA,t

)−ξ
YA,t −

(RK,t
Pt

)
Kt −

(
Wt
Pt

)
Nt .

1. The aggregate production function YA,t =
[
utKt

]ψ [(Nt −N0
)
At
]1−ψ

follows
from the CRS technology, the relative prices RK,t

/
Pt and Wt

/
Pt , and

2. the definitions of the factor inputs =⇒ aggregate efficiency units of capital
and labor services.
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Primitives: Household Preferences and Its Budget Constraint

▶ There is a unit mass of households taking addresses on the unit circle, ℓ ∈ [0, 1].

▶ Household preferences are intertemporally separable and separable across (net)
consumption, labor disutility, and real balances

U
(
ct , ct−1, nt

(
ℓ
)
,
Ht
Pt

)
= ln

[
ct − hct−1

]
− γ

1+ γ nt
(
ℓ
)1+ 1

γ + ln
[
Ht
Pt

]
, (NK.3)

1. where ct = household consumption, nt
(
ℓ
)
= the ℓth household’s labor supply,

Ht = household cash at the end of date t−1, and Pt = the aggregate price level,
2. the internal consumption habit parameter h ∈ (0, 1), and the Frisch labor

supply elasticity is γ > 0.

▶ The budget constraint of household ℓ is

Ht+1

Pt
+ Bt+1

Pt
+ct+xt+a

(
ut
)
kt+τt = rtutkt+

Wt
(
ℓ
)

Pt
nt
(
ℓ
)
+Ht
Pt
+Rt

Bt
Pt
+Dt

Pt
, (NK.4)

1. where Bt+1 = stock of government bonds carried from date t into date t + 1,
xt = investment, kt+1 = household capital at the end of date t, τt = lump-sum
government transfers, rt = RK,t

/
Pt , which is the real rental rate of kt , Wt

(
ℓ
)
=

the nominal wage of household ℓ, Rt = nominal return on Bt , and a
(
ut
)

is the
capital utilization cost function, a

(
1
)
= 0, a′

(
1
)
> 0, and a′′

(
1
)
> 0.

2. Change ut =⇒ household ℓ has to forgo a(·) units of ct per unit of kt .
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Primitives: The Law of Motion of Capital

▶ The law of motion of capital is

kt+1 =
(
1 − δ

)
kt +

[
1− S

(
1
α

xt
xt−1

)]
xt , δ ∈

(
0, 1

)
, 0 < α, (NK.5)

1. where S
(
·
)

denotes the cost of investment adjustment function, δ is the capital
depreciation rate, α is deterministic TFP growth, and

2. the cost function S(·) is strictly convex, S
(
1
)
= S′

(
1
)
= 0 and S′′

(
1
)
≡ ϖ > 0.

▶ The price of capital, qt , is equivalent to the ratio of the replacement cost of capital
to its market value, which is Tobin’s q.

1. Tobin’s q exists in the NKDSGE model when the real friction of costly
adjustment of investment binds.

2. =⇒ qt > 1, when S
(
·
)
> 0 and qt = 1, given S

(
·
)
= 0.
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Primitives: Staggered Nominal Wage Setting

▶ The ℓth households charge firms Wt
(
ℓ
)

per unit of differentiated labor services in a
monopolistic market in which a Calvo-staggered nominal wage mechanism operates.

1. A wage elasticity θ > 0 =⇒ aggregate labor supply Nt =
[∫ 1

0
nt
(
ℓ
) θ−1
θ dℓ

] θ
θ−1

.

2. Labor market monopoly =⇒ firms have downward-sloping labor demand

schedules, nt
(
ℓ
)
=
[
Wt
Wt
(
ℓ
)]θNt , whereWt =

[∫ 1

0
Wt
(
ℓ
)1−θdℓ] 1

1−θ
is the nominal

wage index and Wt =
[(

1− µW
)
W1−θ
c,t + µW

(
α∗πt−1Wt−1

)1−θ] 1
1−θ its

aggregator.

▶ Under Calvo-staggered nominal wage setting, changes in Wt
(
ℓ
)

are time-dependent.

1. Households optimally update their Wt
(
ℓ
)
s to Wc,t at he probability 1−µW .

2. Otherwise at probability µW , a household’s Wt
(
ℓ
)

equals Wt−1 indexed by
steady-state TFP growth, α∗ = exp

{
α
}
, multiplied by the inflation rate, πt−1

=⇒ full nominal wage indexation adjusted for balance growth.
3. Calvo staggered nominal wage dynamics made operational in a NKDSGE model

by Erceg, Henderson, and Levin (2000, “Optimal monetary policy with staggered
wage and price contracts,” Journal of Monetary Economics 46, 281–313).
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A Household’s Optimization Problem

▶ The ℓth household’s dynamic optimization problem is

Max{ct , kt+1, Ht+1, Bt+1, Wt
(
ℓ
)}Et


∞∑
i=0

βiU
(
ct+i, ct+i−1, nt+i

(
ℓ
)
,
Ht
Pt

) , (NK.6)

1. s.t. period utility (NK.3), the budget constraint (NK.4), the law of motion of

capital (NK.5), and the downward-sloping labor demand, nt
(
ℓ
)
=
[
Wt
Wt
(
ℓ
) ]θNt ,

2. given initial conditions c−1, k0, H0, and B0.

▶ This problem yields the optimal nominal wage condition of the ℓth household

[Wc,t
Pt−1

]1+ θγ
=
(

θ
θ − 1

) Et

∞∑
i=0

[
βµWα

∗−θ
(
1+ 1

γ
)]i [[ Wt+i

Pt+i−1

]θ
Nt+i

]1+ 1
γ

Et

∞∑
i=0

[
βµWα∗(1−θ)

]i
λt+i

[
Wt+i
Pt+i−1

]θ [ Pt+i
Pt+i−1

]−1

Nt+i

, (NK.7)

1. where λt is the Lagrange multiplier on the budget constraint (NK.4)
=⇒ marginal utility of consumption.

2. Equation (NK.7) smooths nominal wage growth, =⇒ forces labor supply
to absorb TFP, monetary policy, and any other relevant shocks.

3. Shifts in labor supply alter production and intra- and intertemporal margins
=⇒ potential for endogenous propagation of real and nominal shocks.
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The Government

▶ The NKDSGE model is closed using the government budget constraint(
1+ Rt

)
Bt + Ptτt =

[
Mt+1 − Mt

]
+ Bt+1.

1. The government finances Bt , interest on Bt , and a lump-sum transfer τt (or if
negative a lump-sum tax) with new bonds Bt+1, and money creation, Mt+1 − Mt .

2. Assume government debt is in zero net supply, Bt+1 = 0 and Ptτt = Mt+1 − Mt ,
along the equilibrium path at all dates t.

▶ Monetary policy is operated under a money growth or interest rate rule.
1. CEE (2005) identify monetary policy with a MA(∞) money growth process,

which is equivalent to the AR(1) money growth rule

mt+1 =
(
1− ρm

)
m∗ + ρmmt + µt , µt ∼N

(
0, σ2

µ

)
, (NK.8)

2. where mt+1 = ln
(
Mt+1/Mt

)
, m∗ is its population mean, and

∣∣∣ρm∣∣∣ < 1.

3. The interest rate or Taylor rule reacts to changes in one-step ahead expected
inflation, Etςt+1, transitory output, Ỹt , and the lagged policy rate, Rt−1,(

1−ρRL
)
Rt =

(
1−ρR

) (
R∗ + κπEtπt+1 + κy Ỹt

)
+υt , υt ∼N

(
0, σ2

υ

)
, (NK.9)

4. where R∗ = exp
(
m∗)/β and

∣∣∣ρR∣∣∣ < 1, the Taylor principle, 1 < κπ holds,

0 < κỸ , and Etπt+1 and Ỹt are free of measurement error.
5. Non-systemic movements in monetary policy are generated by the money

growth shock, µt , or the innovation to the policy rate, υt .

Jim Nason
(
Lecture: Introduction to NK-DSGE Models

)
NK-DSGE Model: Construct, Solve, and Estimate



A NKDSGE Model, Its Linearization, and Solution

A Brief Review of the Kalman Filter & Smoother

Bayesian Analysis of Linearized NKDSGE Models

The NKDSGE Model’s Optimality & Equilibrium Conditions

Stochastic Detrending & the Deterministic Steady State

The Linear Approximate NKDSGE Model and Its Solution

Equilibrium Definition for the NKDSGE Model
▶ The NKDSGE model is a decentralized economy in which equilibrium requires goods,

labor, and money markets to clear in equilibrium.

1. Goods market clears: Kt =
∫ 1

0
Kt
(
j
)
dj =

∫ 1

0
kt
(
ℓ
)
dℓ, given 0 < rt .

2. Labor market clears: Nt =
∫ 1

0
nt
(
ℓ
)
dℓ, given 0 < Wt .

3. Money market clears: Mt = Ht , given 0 < Pt , Rt .
4. =⇒ The aggregate resource constraint is YA,t = Ct + Xt + a

(
ut
)
Kt , where

Ct = ct and Xt = xt .

▶ Enforce a symmetric equilibrium on the markets in which final good firms and
households have monopolistic power.

1. Along the symmetric equilibrium path, firms i and j choose the same
commitment price Pc,t = Pt

(
i
)
= Pt

(
j
)
=⇒ Pt = PA,t and Yt = YA,t .

2. Similar restrictions are on the nominal wages of households ℓ and ı, =⇒ Wc,t =
Wt
(
ℓ
)
= Wt

(
ı
)
, where W−θ

D,t =
(
1− µW

)
W−θ
c,t + µW

(
α∗πt−1WD,t−1

)−θ
and W−θ

D,t =∫ 1

0
Wt
(
ℓ
)−θdℓ deletes Wc,t from the state and obtain Wt = WD,t and Nt = nt .

▶ A rational expectations equilibrium (REE) equates, on average, firm and household
subjective beliefs of rt , and At with objective outcomes created by a market economy.

1. The list includes µt and Rt under the money growth rule, (NK.8),
or υt and Rt for the Taylor rule (NK.9).

2. A flexible price regime adds Pt while a spot labor market appends Wt .
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Optimality Conditions: The Household

▶ The NKDSGE models have FONC that are restricted by the primitives of preferences,
technology, market structure, and monetary policy regime.

▶ The FONCs imply optimality and equilibrium conditions that must be satisfied
by any candidate equilibrium time series.

▶ The optimality condition of consumption, which is the marginal utility of
consumption is

λt =
1

Ct − hCt−1
− βhEt

{
1

Ct+1 − hCt

}
. (OE.1)

▶ The Euler equations for cash and the government bond are

λt
Pt
= βEt

{
λt+1

Pt+1
+ 1
Mt+1

}
, (OE.2)

and

λt
Pt
= βEt

λt+1

Pt+1
Rt+1. (OE.3)
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Optimality Conditions: The Demand for Investment, Capital, and Labor

▶ The household’s choice of investment leads to the optimality condition of investment

1− qt
qt

+ S
(

Xt
α∗Xt−1

)
+ S′

(
Xt

α∗Xt−1

)
Xt

α∗Xt−1

= β
α∗

Et

{
λt+1qt+1

λtqt
S′
(
Xt+1

α∗Xt

)[
Xt+1

Xt

]2
}
. (OE.4)

▶ The Euler equation for capital is

qt = βEt

{
λt+1

λt

[
ψut+1φt+1

YA,t+1

Kt+1
− a

(
ut+1

)
+ qt+1

(
1− δ

)]}
. (OE.5)

▶ Equating the cost of capital utilization with the firm’s marginal product of capital
implies a demand for efficiency unit of capital,

a′
(
ut
)
= ψφt

YA,t
Kt

. (OE.6)

▶ The firm’s intratemporal optimality condition implying labor demand is

Wt
Pt

= φt
(
1−ψ

) YA,t
Nt −N0

. (OE.7)
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Optimality and Equilibrium Conditions: Goods Market Pricing

▶ The solution to a monopolistically competitive firm’s optimal pricing problem is

Pc,t
Pt−1

=
(

ξ
ξ − 1

) Et

∞∑
i=0

[
βµP

]i
λt+iφt+iYD,t+i

[
Pt+i
Pt+i−1

]ξ

Et

∞∑
i=0

[
βµP

]i
λt+iYD,t+i

[
Pt+i
Pt+i−1

]ξ−1
. (OE.8)

▶ Laws of motion of the aggregate price level and aggregate supply price level are

P1−ξ
t = µP

[
Pt−1

Pt−2
Pt−1

]1−ξ
+
(
1− µP

)
P1−ξ
c,t , (OE.9)

and

P−ξA,t = µP

[
PA,t−1

PA,t−2
PA,t−1

]−ξ
+
(
1− µP

)
P−ξc,t . (OE.10)

▶ A symmetric equilibrium in the goods market leads to

YA,t
YD,t

=
(PA,t
Pt

)−ξ
. (OE.11)
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Optimality and Equilibrium Conditions: Nominal Wages

▶ A household sets its optimal nominal wage according to

[Wc,t
Pt−1

]1+ θγ
=
(
θ

θ − 1

) Et

∞∑
i=0

[
βµWα

∗−θ
(
1+ 1

γ
)]i [[ Wt+i

Pt+i−1

]θ
Nt+i

]1+ 1
γ

Et

∞∑
i=0

[
βµWα∗(1−θ)

]i
λt+i

[
Wt+i
Pt+i−1

]θ [ Pt+i
Pt+i−1

]−1

Nt+i

. (OE.12)

▶ The aggregate and aggregate demand nominal wages have laws of motion

W1−θ
t = µW

(
α∗

Pt−1

Pt−2
Wt−1

)1−θ
+
(
1− µW

)
W1−θ
c,t , (OE.13)

and

W−θ
D,t = µW

(
α∗

Pt−1

Pt−2
WD,t−1

)−θ
+
(
1− µW

)
W−θ
c,t . (OE.14)

▶ The ratio of labor market demand and supply equal a ratio of the aggregate demand
nominal wage to the aggregate nominal wage in a symmetric equilibrium

Nt
nt

=
(WD,t
Wt

)−θ
. (OE.15)
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Miscellaneous Equilibrium Conditions

▶ Repeating the aggregate resource constraint

YD,t = Ct + Xt + a
(
ut
)
Kt , (OE.16)

1. the law of motion of capital

Kt+1 =
(
1− δ

)
Kt +

[
1− S

(
Xt

α∗Xt−1

)]
Xt , (OE.17)

2. and the aggregate supply or production function

YA,t =
[
utKt

]ψ[(
Nt −N0

)
At
]1−ψ

, (OE.18)

3. completes the optimality and equilibrium conditions of the NKDSGE model.

▶ The impulse system or shocks driving the NKDSGE model consist of the money
growth rule (NK.8) or the Taylor rule (NK.9) and the TFP process

lnAt = α + lnAt−1 + εt , εt ∼N
(
0, σ2

ε
)
. (OE.19)
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Define Stochastic Detrending

▶ The TFP shock At creates trend movements or fluctuations in the level
of the NKDSGE model.

1. Aggregate quantities and prices are nonstationary because lnAt is
the random walk (with drift) process (OE.19).

2. The state and endogenous flow variables need stochastic detrending
to render stationary the equilibrium path of the NKDSGE model.

3. Stochastic detrending consists of Ŷj,t ≡ Yj,t
/
At , j = A, D, Ĉt ≡ Ct

/
At ,

X̂t ≡ Xt
/
At , K̂t+1 ≡ Kt+1

/
At , P̂t ≡ PtAt

/
Mt , P̂i,t ≡ Pi,tAt

/
Mt , i = A, c,

Ŵt ≡ Wt
/
Mt , and Ŵc,t ≡ W℘,t

/
Mt , ℘ = D, c, and λ̂t ≡ λtAt .

▶ Note nominal prices and wages are detrended by a nominal quantity, the
money stock Mt , but relative prices, which includes real rates of return,
are not.
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The Results of Stochastic Detrending: The Household

▶ Apply these definitions to equations (OE.1)–(OE.14) to produce the stochastically
detrended optimality and equilibrium conditions.

▶ The stochastically detrended marginal utility of consumption is

λ̂t =
αt

αt Ĉt − hĈt−1
− βhEt

{
1

αt+1Ĉt+1 − hĈt

}
, where αt =

At
At−1

. (SD.1)

▶ The money and bond Euler equations are

λ̂t
P̂t

= βEt

{[
λ̂t+1

P̂t+1
+ 1

]
exp(−mt+1)

}
, (SD.2)

and

λ̂t
P̂t

= βEt

{
λ̂t+1

P̂t+1

Rt+1

exp(mt+1)

}
, (SD.3)

subsequent to stochastic detrending.
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Stochastic Detrending: The Demand for Investment, Capital, and Labor
▶ Stochastic detrending of the intertemporal optimality conditions for investment and

capital give

1− qt
qt

+ S
(
αtX̂t
α∗X̂t−1

)
+ S′

(
αtX̂t
α∗X̂t−1

)
αtX̂t
α∗X̂t−1

= β
α∗

Et

αt+1
qt+1λ̂t+1

qt λ̂t
S′
(
αt+1X̂t+1

α∗X̂t

)[
X̂t+1

X̂t

]2
 , (SD.4)

and

qt = βEt

{
λ̂t+1

λ̂t

[
ψut+1φt+1

Ŷt+1

K̂t+1
+ qt+1[1− δ] − a(ut+1)

αt+1

]}
. (SD.5)

▶ When applied to the intratemporal optimality conditions of capacity utilization and
labor demand, the results are

a′(ut) = ψφtαt
Ŷt
K̂t
, (SD.6)

and

Ŵt
P̂t

= (1−ψ)φt
Ŷt

Nt −N0
. (SD.7)
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Stochastic Detrending: Goods Market Pricing

▶ Stochastic detrending introduces money growth into the forward-looking optimally
price of a final goods firm

exp
(
mt − εt

) P̂c,t
P̂t−1

=
(

ξ
ξ − 1

)Et

∞∑
i=0

(
βµP

)iλ̂t+iφt+iŶD,t+i
[

exp
(
mt+i − εt+i

) P̂t+i
P̂t+i−1

]ξ

Et

∞∑
i=0

(
βµP

)iλ̂t+iŶD,t+i
[

exp(mt+i − εt+i)
P̂t+i
P̂t+i−1

]ξ−1
. (SD.8)

▶ The demand schedule for final goods is little affected by stochastic detrending

ŶA,t
ŶD,t

=
(
P̂A,t
P̂t

)−ξ
. (SD.9)

▶ However, money growth appears in the laws of motion of the aggregate price level
and the aggregate supply price because of stochastic detrending

P̂1−ξ
t = µP

[
exp

(
−mt +mt−1 + εt − εt−1

) P̂t−1

P̂t−2
P̂t−1

]1−ξ
+
(
1− µP

)
P̂1−ξ
c,t , (SD.10)

and

P̂−ξA,t = µP

[
exp

(
−mt +mt−1 + εt − εt−1

) P̂A,t−1

P̂A,t−2
P̂A,t−1

]−ξ
+
(
1− µP

)
P̂−ξc,t . (SD.11)
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Stochastic Detrending: Nominal Wages, I

▶ After stochastic detrending, the optimal nominal wage is

exp
(
mt

) Ŵc,t
P̂t−1

1+ θγ
=
(

θ
θ − 1

)

×

Et
∞∑
i=0

(
βµW

)i
exp

(
θ
(

1+ 1
γ

))mt+i + i∑
j=1

εt+j−1



 Ŵt+i
P̂t+i−1

θ Nt+i


1+ 1
γ

Et
∞∑
i=0

(
βµW

)i
λt+i exp

−(1− θ)
mt+i + i∑

j=1
εt+j−1



 Ŵt+i
P̂t+i−1

θ  P̂t+i
P̂t+i−1

−1

Nt+i

. (SD.12)

▶ Note that at i = 0,
∑i
j=1 εt+j−1 ≡ 1.

▶ Money growth is a factor that can drive the household’s choice of the stationary
optimal nominal wage, Ŵc,t .
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Stochastic Detrending: Nominal Wages, II

▶ Stochast detrending alter the laws of motion of the aggregate nominal wage and
aggregate demand nominal wage to

Ŵ1−θ
t = µW

[
exp

(
−mt +mt−1 − εt−1

) P̂t−1

P̂t−2
Ŵt−1

]1−θ
+
(
1− µW

)
Ŵ1−θ
c,t , (SD.13)

and

Ŵ−θ
D,t = µW

[
exp

(
−mt +mt−1 − εt−1

) P̂t−1

P̂t−2
ŴD,t−1

]−θ
+
(
1− µW

)
Ŵ−θ
c,t . (SD.14)

▶ The symmetric equilibrium and stochastic detrending sets the aggregate labor
demand-aggregate labor supply ratio to the aggregate demand nominal
wage-aggregate nominal wage ratio

Nt
nt

=
(
ŴD,t
Ŵt

)−ξ
. (SD.15)
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Stochastic Detrending: Miscellaneous Equilibrium Conditions

▶ The stochastically detrended aggregate resource, law of motion of capital, and
production technology are

Ŷt = Ĉt + X̂t +
a
(
ut
)
K̂t

αt
, (SD.16)

K̂t+1 =
(
1− δ

)
K̂t

αt
+
[

1− S
(
αtX̂t
α∗X̂t−1

)]
X̂t , (SD.17)

and

Ŷt =
[
ut
K̂t
αt

]ψ[
Nt −N0

]1−ψ
. (SD.18)

▶ The steady state equilibrium and the first-order linear approximation of the NKDSGE
model is grounded on equations (SD.1)–(SD.18).
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The Deterministic Steady State and the Household

▶ A deterministic steady state equilibrium sets all shocks innovations that drive
fluctuations in the NKDSGE model to zero for all dates t.

1. =⇒ εt = 0 and µt = 0 or υt = 0 and also remember the restrictions on u∗ = 1,
a(1) = 0, and S(1) = S′(1) = 0 in the steady state equilibrium; see CEE (2005).

2. Denote deterministic steady state values with λ∗, C∗, Y∗, X∗, N∗, K∗, q∗,
W∗, r∗, P∗, u∗, φ∗, and R∗, which correspond to the associated endogenous
variables found in the stochastically detrended optimality and equilibrium
conditions (SD.1)–(SD.18).

▶ The deterministic steady state conditions for the household’s consumption function,
money demand, and bond demand are

C∗λ∗ = α∗ − βh
α∗ − h , (STEDST.1)

λ∗

P∗
= β

exp
(
m∗) − β , (STEDST.2)

and

R∗ = exp
(
m∗)
β

. (STEDST.3)
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The Deterministic Steady State and Investment, Capital, and Labor

▶ The demand for investment, capital, and labor become

K∗

Y∗
= βα∗ψφ∗

α∗ − β
(
1− δ

) , (STEDST.4)

q∗ = 1, (STEDST.5)

a′
(
1
)
= ψφ∗α∗

Y∗

K∗
, (STEDST.6)

W∗

P∗
=
(
1−ψ

)
φ∗

Y∗

N∗ −N0
, (STEDST.7)

in the deterministic steady state.
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The Deterministic Steady State and Pricing in the Goods and Labor Markets

▶ In the deterministic steady state, pricing in the goods markets collapses to

φ∗ = ξ − 1
ξ

, (STEDST.8)

which is steady state real marginal cost and because of the symmetric equilibrium

P∗ = P∗A = P∗c and Y∗ = Y∗A . (STEDST.9)

▶ Similarly, the steady state nominal wage is found from

W∗ =
(

θ
θ − 1

)
P∗

λ∗
N∗

1
γ , (STEDST.10)

where the symmetric equilibrium gives

W∗ = W∗
D = W∗

c . (STEDST.11)
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The Deterministic Steady State: Miscellaneous Equilibrium Conditions

▶ The aggregate resource constraint, the law of motion of capital, and the production
technology are restricted by the deterministic steady state restricts to

Y∗ = C∗ + X∗, (STEDST.12)

X∗

K∗
= 1 − 1− δ

α∗
, (STEDST.13)

and

Y∗ =
(
K∗

α∗

)ψ [
N∗ −N0

]1−ψ
. (STEDST.14)
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The Deterministic Steady State: Notes, I

▶ The deterministic steady state equilibrium is a flexible price monopolistically
competitive equilibrium in which there are real adjustment costs.

1. The real frictions are internal consumption habit afflicting households
(
h ≠ 0

)
=⇒ the steady state consumption function (STEDST.1),

2. the fixed labor cost
(
N0 > 0

)
imposed on the production technology of the

final goods firms =⇒ sustains monopolistic competition, and
3. capacity utilization costs inflicted on households =⇒ marginal product of

capital is restricted by the ratio of the marginal cost of adjusting capacity
utilization, a′

(
1
)
> 0, deflated by steady state marginal cost, φ∗, defined

by equation (STEDST.8).
4. but this real cost is absent from the deterministic steady state aggregate

resource constraint (STEDST.12) =⇒ a
(
1
)
= 0.

5. However, the cost of adjusting investment is zero in the deterministic
steady state =⇒ S

(
1
)
= S′

(
1
)
= 0.

▶ There are no nominal frictions in the deterministic steady state equilibrium.

▶ Thus, the NKDSGE model responds to a given shock with a transition path
restricted by sticky final goods prices and nominal wages, but ends at a
steady state equilibrium lacking nominal frictions.
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The Deterministic Steady State: Notes, II

▶ The endogenous steady state ratios and variables are functions of the NKDSGE
model’s deep parameters, Ξ = [β h γ α ψ N0 δ ξ, θ m∗]′.

▶ Find N∗ by applying nonlinear equation solver to steady state conditions (STEDST.7),
(STEDST.10), and (STEDST.14) =⇒ given N∗, use equations (STEDST.10) and
(STEDST.2) to compute W∗.

▶ Next, combine equations (STEDST.1) and (STEDST.2) to calculate P∗C∗, which
together with equation (STEDST.7) produces C∗

/
Y∗, given N∗ and W∗.

▶ Divide both sides of the equality of the steady state aggregate resource constraint
(STEDST.12) by Y∗ to solve for X∗

/
Y∗, given the C∗

/
Y∗ ratio obtained in the

previous step.

▶ Since X
∗

Y∗ = K∗
Y∗

X∗
K∗ , divide both sides of the equality of the steady state production

function (STEDST.14) and combine the result with equation (STEDST.13) to find K∗
Y∗

=⇒ equation (STEDST.6) gives a′
(
1
)
.

▶ Given the K
∗

Y∗ ratio, the steady state production function (STEDST.14) yields K∗,

which in turn generates Y∗ =⇒ calculate C∗, X∗, P∗, and λ∗.
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The Deterministic Steady State: Notes, III

▶ Endogenous deterministic steady state ratios and levels grounded
in population relationships.

1. Calibrate Ξ to generate unconditional population first moments of the
steady state ratios and levels.

2. Given unconditional sample first moments of CtYt , XtYt , etc., estimate

several of the deep structural parameters located in Ξ.

3. There may be an insufficient number of sample moments to identify
the ten elements of Ξ.

▶ How to choose which elements of Ξ to estimate? =⇒ Are some deep
structural parameters more economically compelling than others?
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Linearizing the NKDSGE Model: Introduction

▶ When likelihood estimation of NKDSGE models is grounded on the Kalman filter,
require linear approximate decisions rule for the endogenous state variables
of the NKDSGE model.

▶ Log linearize the optimality and equilibrium conditions of the NKDSGE model
to create these linear approximate decision rules.

1. Compute first-order Taylor expansions of the stochastically detrended
system (SD.1)–(SD.18) around the deterministic steady state given
by equations (STEDST.1)–(STEDST.14).

2. Construction of the log linear approximations exploit, for example, the
definitions C̃t = ln Ĉt − lnC∗ or Ñt = lnNt − lnN∗.

3. Since Pt
Pt−1

= P̃t Mt At−1

P̃t−1Mt−1At
, steady state inflation, π∗ =m∗ − α.

▶ Remember a symmetric equilibrium has several implications for the log linear
approximation of the NKDSGE model.

1. Subsequent to log linearizing around the deterministic steady state,
2. the assumption of a symmetric equilibrium equates the aggregate

price indexes P̃t = P̃A,t and the aggregate nominal wages W̃t = W̃D,t ,
given the initial conditions P0 = PA,0 and W0 = WD,0.

3. =⇒ Reduces the dimension of the state vector.
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Linearizing the NKDSGE Model: The Household Optimality Conditions

▶ Apply log linearization to the stochastically detrended household Euler marginal
utility, cash, and bond conditions (SD.1), (SD.2), and (SD.8) to obtain the second-order
expectational difference equation in C̃t

(
α∗ − h

)(
α∗ − βh

)
λ̃t = βα∗hEt C̃t+1 −

(
βh2 +α∗2)C̃t + α∗h(C̃t−1 − εt

)
, (LZ.1)

and the first-order expectational difference equations in λ̃t and P̃t

λ̃t − P̃t =
λ∗

λ∗ + P∗ Et
{
λ̃t+1 − P̃t+1

}
− m̃t+1, (LZ.2)

and

λ̃t − P̃t = Et
{
λ̃t+1 − P̃t+1 + R̃t+1

}
− m̃t+1. (LZ.3)

▶ Remember mt+1 is realized at the end of date t.
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Linearizing the NKDSGE Model: The Demand for Investment, Capital, & Labor
▶ The stochastically detrended optimality conditions (SD.4), (SD.5), (SD.6) and (SD.7)

yield log linearized conditions, which are

1. a second-order expectational difference equation in X̃t

βϖEtX̃t+1 −
(
1+ β

)
ϖX̃t + ϖX̃t−1 + q̃t = ϖεt , (LZ.4)

2. a second-order expectational difference equation in q̃t

q̃t + λ̃t = Et

{
λ̃t+1 + βψφ∗

Y∗

K∗
[
φ̃t+1 + Ỹt+1 − K̃t+1

]
+ β1− δ

α∗
q̃t+1

}
, (LZ.5)

3. an intratemporal condition relating deviations in capacity utilization from its
deterministic steady state value, ũt , to an equivalent notion of the real marginal
cost of increasing the capital input by one unit plus the TFP shock innovation

ϱũt = φ̃t + Ỹt − K̃t + εt , ϱ ≡ a′′(1)
a′(1)

, (LZ.6)

4. and an intratemporal condition relating deviations in the real wage from its
deterministic steady state to the linearized marginal cost of adding an
additional unit of labor input to production

W̃t − P̃t = φ̃t + Ỹt −
N∗

N∗ −N0
Ñt . (LZ.7)
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Linearizing the NKDSGE Model: Sticky Prices and Nominal Wages

▶ Log linearization of the optimal price and nominal wage conditions (SD.8) and
(SD.12) produces second-order expectational difference equations in π̃t and W̃t

µP
(
1+ β

)
π̃t = βµPEtπ̃t+1 + µP π̃t−1 +

(
1− µP

)(
1− βµP

)
φ̃t

+ βµPm̃t+1 − µP
(
1+ β

) (
m̃t − εt

)
+ µP

(
m̃t−1 − εt−1

)
, (LZ.8)

and[
1 + βµ2

W −
θ
(
1− µW

)(
1− βµW

)
θ + γ

]
W̃t = βµWEtW̃t+1 + µW W̃t−1

+
[(

1− µW
)(

1− βµW
)

θ + γ

]
Ñt −

[
γ
(
1− µW

)(
1− βµW

)
θ + γ

](
λ̃t − P̃t

)
− βµW π̃t + µW π̃t−1

+ βµW m̃t+1 −
(
1+ β

)
µW m̃t + µW m̃t−1 + βµW εt − µW εt−1. (LZ.9)

▶ The bivariate system of inflation, π̃t ≡ P̃t − P̃t−1, and the nominal wage is recursive
=⇒ compute W̃t conditional on π̃t , given Ñt and shocks to TFP and money growth.

▶ The second-order expectational difference equation (LZ.9) has a Phillips curve-like
relationship between π̃t and Ñt =⇒ that is conditional on W̃t , its one-step ahead
expectation, and lag, and shocks to money growth and TFP.
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Linearizing the NKDSGE Model: Miscellaneous Equilibrium Conditions

▶ The stochastically detrended aggregate resource constraint, law of motion of capital,
and aggregate technology, which are equations (SD.13), (SD.14), and (SD.15), are after
log linearization

K̃t+1 = 1− δ
α∗

(
K̃t − εt

)
+ X∗

K∗
X̃t , (LZ.10)

Ỹt =
C∗

Y∗
C̃t +

X∗

Y∗
X̃t + ψφ∗ũt , (LZ.11)

and

Ỹt = ψ
(
ũt + K̃t

)
+
(
1−ψ

) N∗

N∗ −N0
Ñt − ψεt , (LZ.12)
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Linearizing the NKDSGE Model: The Impulse System

▶ The TFP process (OE.19) is recast in stationary log linear form as

lnαt = ln
At
At−1

= α + εt . (LZ.13)

▶ The log linear money growth rule (NK.8) is written

m̃t+1 = ρmm̃t + µt . (LZ.14)

▶ When a log linearized NKDSGE model operates under a interest rate rule, the revised
Taylor rule shows deviations of the policy rate from its deterministic steady state
react to m̃t+1 besides Etπ̃t+1 and Ỹt

(
1− ρRL

)
R̃t =

(
1− ρR

) (
κπEtπ̃t+1 + κπm̃t+1 + κy Ỹt

)
+ υt . (LZ.15)
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Linearizing the NKDSGE Model: The Log Linearized System

▶ Collect the unknowns of the linear approximate NKDSGE model consisting of the
linear stochastic difference equations (LZ.1)–(LZ.12), the TFP shock innovation
(LZ.13), and the Taylor rule (LZ.15) in

St =
[
λ̃t C̃t X̃t q̃t Ỹt R̃t ũt φ̃t Ñt m̃t+1 K̃t+1 Et P̃t+1 EtW̃t+1 P̃t W̃t

]′
.

▶ The endogenous and exogenous variables are collected in St =⇒ all the stochastically
detrended and demeaned NKDSGE models variables.

1. The vector St includes the ‘true’ state variable K̃t+1 and the ‘artificial’ state
variables Et P̃t+1, EtW̃t+1, P̃t , and W̃t .

2. =⇒ Price and nominal wage expectations and the aggregate price level and
nominal wage contribute to the state of the economy.
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Linearizing the NKDSGE Model: A Note on the Money Market Equilibrium

▶ Under the Taylor rule (LZ.15), it and the linearized Euler equations for cash and
bonds jointly restrict the money market equilibrium of this NKDSGE model.

1. Equate the linearized Euler equations (LZ.2) and (LZ.3) for cash and bonds

=⇒ Et
{
λ̃t+1 − P̃t+1

}
= − exp

(
m∗)/[exp

(
m∗)− β]Et R̃t+1.

2. The linearized bond Euler equation (LZ.3) is a Fisher-like equation, m̃t+1 =
Et
{
R̃t+1 − π̃t+1

}
− Et

{
−
(
λ̃t+1 − λ̃t

)}
, where money demand is a residual

between the ‘ ex ante real rate’ and −
(
λ̃t+1 − λ̃t

)
, which represents the SDF.

▶ Under the money growth rule (LZ.14), the bond Euler equation is redundant =⇒ drop
the linearized bond Euler equation (LZ.3) from the system and delete R̃t from St .

1. ‘Money demand’ equates the marginal utility of consumption-price level
differential to the present discounted expected value of money growth
using the linearized money Euler equation (LZ.2),

λ̃t − P̃t = −
∞∑
j=0

[
β

exp
(
m∗)

]j
Etm̃t+1+j .

2. Compute Et R̃t+1 as a ‘residual’ from the linearized bond Euler equation (LZ.3)

Et R̃t+1 = Et
{
−
(
λ̃t+1 − P̃t+1

)
+ λ̃t − P̃t

}
+ m̃t+1.
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Solving the Linearized NKDSGE Model: Introduction

▶ Solve the linear approximate NKDSGE model for St , which consists of the linear
stochastic difference equations (LZ.1)–(LZ.12) and the Taylor rule (LZ.15) using
methods developed by

1. Sims (2002, “Solving linear rational expectations models,” Computational
Economics 20, 1–20).

2. Also see Zadrozny (1998, “An eigenvalue method of undetermined coefficients
for solving linear rational expectations models,” Journal of Economic Dynamics
and Control 22, 1353–1373).

3. Their approaches are explicit about handling expectations (or expectational
errors) to solve linear RE models.

▶ Sims’ solution algorithm needs the expectational forecast errors

ϑλ̃,t = λ̃t − Et−1λ̃t , ϑC̃,t = C̃t − Et−1C̃t , ϑX̃,t = X̃t − Et−1X̃t ,
ϑq̃,t = q̃t − Et−1q̃t , ϑỸ ,t = Ỹt − Et−1Ỹt , ϑũ,t = ũt − Et−1ũt ,
ϑφ̃,t = φ̃t − Et−1φ̃t , ϑÑ,t = Ñt − Et−1Ñt , ϑP̃ ,t = P̃t − Et−1P̃t ,

ϑW̃ ,t = W̃t − Et−1W̃t , and ϑR̃,t = R̃t − Et−1R̃t .

▶ Collect these forecast errors into the vector

ϑt =
[
ϑλ̃,t ϑC̃,t ϑX̃,t ϑq̃,t ϑỸ ,t ϑũ,t ϑφ̃,t ϑÑ,t ϑP̃ ,t ϑW̃ ,t ϑR̃,t

]′
.
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Solving the Linearized NKDSGE Model: Steps 1 and 2

▶ Constructing the solution to the linear approximate optimality and equilibrium
conditions (LZ.1)–(LZ.12) and the Taylor rule (LZ.15) is a multi-step process.

▶ Define ζt = [εt υt]′ and remember St contains elements that appear in equations
(LZ.1)–(LZ.12) as one-step ahead expectations.

1. When monetary policy is the AR(1) money growth rule (LZ.14), ζt = [εt µt]′.
2. If there are additional shocks, say preference, mark-up, and government

spending shocks, the innovations to these shocks would be added to ζt
while the demeaned logs of these shocks would be added to St .

▶ Next, construct the multivariate first-order stochastic difference equation system
of the NKDSGE model

GGG0St = GGG1St−1 + VVVζt + KKKϑt , (SLZ.1)

where GGG0, GGG1, VVV, and KKK express the cross-equation restrictions embedded in the
optimality and equilibrium conditions (LZ.1)–(LZ.12), and the Taylor rule (LZ.15).

1. Cross-equation restrictions are the hallmark of linear RE models.
2. Solving linearized NKDSGE models is difficult because St contains forward

looking expectations and GGG0 is often has reduced rank (i.e., singular).
3. =⇒ Cannot compute the eigenvalues of the equations (SLZ.1) from GGG−1

0 GGG1.
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Solving the Linearized NKDSGE Model: The QZ Decomposition and Step 3

▶ Sims (2002) studies multivariate linear RE models similar to (SLZ.1).
1. The solution algorithm taps the QZ (or generalized complex Schur)

decomposition of the square matrices GGG0 and GGG1.
2. Assume the eigenvalues of GGG0 and GGG1 reside on the open interval

(
0, ∞

)
.

3. =⇒ Compute the eigenvalues of the pair
[
GGG0, GGG1

]
, where GGG0 can be singular.

4. The QZ decomposition employs QQQ′FFFZZZ′ = GGG0 and QQQ′OOOZZZ′ = GGG1, where
QQQQQQQQQ′QQQQQQQQQ = ZZZ′ZZZ = I, FFF and OOO are upper triangular matrices, and there are
possibly complex elements in the square matrices QQQ, ZZZ, FFF and OOO.

5. Define Dt = ZZZ′St and let QQQj· denote the jth block of rows of QQQ.

▶ Premultiply the system of linear equations (SLZ.1) by QQQ, remember FFF is a square
upper triangular matrix, and break Dt into D1,t = ZZZ′·1St , D2,t = ZZZ′·2St , where ZZZ =[
ZZZ·1 ZZZ·2

]
, which maps the dynamic system FFFDt = OOODt−1 + QQQVVVζt + QQQKKKϑt into

[
FFF11 FFF12
0 FFF22

][
D1,t
D2,t

]
=
[

OOO11 OOO12
0 OOO22

][
D1,t−1
D2,t−1

]
+
[

QQQ1·
QQQ2·

] (
VVVζt +KKKϑt

)
. (SLZ.2)

▶ A QZ decomposition of GGG0 and GGG1 always exists, but these eigenvalues are not unique.

1. The generalized eigenvalues of
[
FFF OOO

]
can be unique, where these eigenvalues

are denoted f−1
ii oii and fii and oii are diagonal elements of these matrices.

2. The largest elements of FFF are placed in FFF22 =⇒ the lower right block of the
system (SLZ.2).
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Solving the Linearized NKDSGE Model: Step 4a

▶ A subset of the generalized eigenvalues f−1
ii oii ≥ ν and the remaining f−1

ii oii < ν ,
where ν > 1 is the maximal growth rate of the elements of St .

1. The eigenvalues f−1
ii oii are ordered to partition the system (SLZ.2) in such a

way to place only explosive forward-looking elements in D2,t .
2. =⇒ Exogenous shocks that are intrinsic and potentially extrinsic (i.e., sunspots).

▶ The partition of the system of equations (SLZ.2) creates (what Sims calls) the
‘reduced form’ process of D2,t , which is the second row of the system (SLZ.2)

D2,t = MMMD2,t−1 + MMMOOO−1
22 QQQ2·

(
VVVζt + KKKϑt

)
, where MMM ≡ FFF−1

22 OOO22. (SLZ.3)

▶ Iterate equation (SLZ.3) forward to find

D2,t = −
∞∑
i=0

MMM−iOOO−1
22 QQQ2·

(
VVVζt+i+1 +KKKϑt+i+1

)
, (SLZ.4)

after invoking the transversality condition limi -→∞MMM−iD2,t+i = 0 holds.
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Solving the Linearized NKDSGE Model: Step 4b

▶ The goal is to exclude extrinsic equilibria from the solution of the expected present
discounted value formula (SLZ.4) of D2,t .

▶ Remember extrinsic shocks are subjective beliefs held by the households and firms
of the linearized NKDSGE model about the behavior of the elements of ϑt .

▶ Subjective beliefs do not matter for the expected present discounted value (SLZ.4) if
1. D1,t and D2,t are orthogonal to movements in the expectational error vector ϑt .
2. Since there are no subjective beliefs producing persistent expectational errors,

D2,t belongs only to the date t information set.

▶ When only the intrinsic shocks of ζt drive fluctuations in the linearized NKDSGE
model, the expected present discounted value formula (SLZ.4) is

Et

∞∑
i=0

MMM−iOOO−1
22 QQQ2·VVVζt+i+1 = Et

∞∑
i=0

MMM−iOOO−1
22 QQQ2·

(
VVVζt+i+1 + KKKϑt+i+1

)
, (SLZ.5)

because Etϑt+j = 0, for all j ≥ 1 =⇒ ϑt is serially uncorrelated.

▶ Sunspots add serial correlation to the MA of the impulse dynamics of the reduced
form VARMA of a linearized DSGE model,

1. but no cross-equations are created by the persistence tied to extrinsic shocks.
2. This differs from adding measurement error to a linearized DSGE model,

which adds cross equation restrictions to the endogenous dynamics.

Jim Nason
(
Lecture: Introduction to NK-DSGE Models

)
NK-DSGE Model: Construct, Solve, and Estimate



A NKDSGE Model, Its Linearization, and Solution

A Brief Review of the Kalman Filter & Smoother

Bayesian Analysis of Linearized NKDSGE Models

The NKDSGE Model’s Optimality & Equilibrium Conditions

Stochastic Detrending & the Deterministic Steady State

The Linear Approximate NKDSGE Model and Its Solution

Solving the Linearized NKDSGE Model: Step 4c

▶ The problem is the restriction Etϑt+j = 0, for all j ≥ 1, is only necessary.

▶ Sims (2002) shows the necessary and sufficient conditions for the expected present
discounted value formula (SLZ.5) to hold are

s∑
j=1

(
MMM−jOOO−1

22 QQQ2·VVVζt+j + QQQ2·KKKϑt+j
)
= 0, (SLZ.6)

where s denotes a horizon sufficient for the finite forward-looking sum to hold an
appropriately dimensioned column vector of zeros.

1. The column space spanned by
∑s
j=1MMM−jOOO−1

22 QQQ2·VVV is a subset of the column
space spanned by Q2·KKK.

2. The necessary and sufficient conditions imply there is a horizon s at which
information in the expected path of extrinsic shocks

{
ϑt+j

}s
j=1 is ‘covered’

by the expected discounted path of
{
ζt+j

}s
j=1 =⇒ the extrinsic and intrinsic

shocks are linearly dependent.

▶ There is a solution of the multivariate first order system (SLZ.1) if and only if the
restrictions imposed by equations (SLZ.6) are satisfied.

1. The solution is QQQ2·VVVζt+1 + QQQ2·KKKϑt+1 = 0, if and only if ζt is serially
uncorrelated, =⇒ only the TFP and Taylor rule innovations enter ζt =

[
εt υt

]′
.

2. Given ζt is serially correlated, the restrictions of (SLZ.6) need to be satisfied to
generate a solution for the linearized NKDSGE model (SLZ.1) =⇒ if the money
growth supply rule (NK.8) substitutes for the Taylor rule (NK.9).
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Solving the Linearized NKDSGE Model: Step 5a

▶ Given an intrinsic solution exists, Sims (2002) suggests taking some matrix ΦΦΦ such
that QQQ1·KKK = ΦΦΦQQQ2·KKK.

▶ Premultiply equation (SLZ.2) with [I −ΦΦΦ], combine the result with equation (SLZ.3),
and observe this annihilates the expectational forecast errors ϑt , which gives

FFF11D1,t +
(
FFF12 − ΦΦΦFFF22

)
D2,t = OOO11D1,t−1 +

(
OOO12 − ΦΦΦOOO22

)
D2,t−1 +

(
QQQ1· − ΦΦΦQQQ2·

)
VVVζt .

▶ Stack these equations on top of the system of equations (SLZ.4) to find

[
FFF11 FFF12 − ΦΦΦFFF22

0 I

][
D1,t

D2,t

]
=
[

OOO11 OOO12 − ΦΦΦOOO22

0 0

][
D1,t−1

D2,t−1

]

+
[

QQQ1· − ΦΦΦQQQ2·
0

]
VVVζt − Et




0
∞∑
j=1

MMM−jOOO−1
22 QQQ2·VVVζt+j


 .

▶ The lower block has the “explosive” forward-looking variables of the linear
approximate system.
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Solving the Linearized NKDSGE Model: Step 5b

▶ This matrix system maps into the unique intrinsic solution for St

St = ΘΘΘSSt−1 + ΘΘΘζ,0ζt + ΘΘΘζ,1 ∞∑
j=1

MMMjOOO−1
22 QQQ2·VVV Etζt+j , (SLZ.7)

whereΘΘΘS = ZZZ·1FFF−1
11

[
OOO11

(
OOO12− ΦΦΦFFF22

)]
ZZZ, ΘΘΘFFF =

[
ZZZ·1 ZZZ·2

][FFF−1
11 −FFF−1

11

(
FFF12 − ΦΦΦFFF22

)
0 I

]
,

ZZZ =
[
ZZZ·1 ZZZ·2

]
, ΘΘΘζ,0 = ΘΘΘFFF ·

[
QQQ1· − ΦΦΦQQQ2·

0

]
·VVV, and ΘΘΘζ,1 = −ΘΘΘFFF,·2 because ZZZ′ = ZZZ−1,

ZZZ = ZZZ′−1, ZZZ′·1ZZZ·1 = I, ZZZ′·2ZZZ·2 = I, ZZZ′·1ZZZ·2 = 0, and, ZZZ′·1ZZZ·2 = 0.

▶ We engage the system of first-order stochastic difference equations (SLZ.7) to
produce linear approximate solutions for the NKDSGE models.

1. Although the system of equations (SLZ.1) always has a solution, is it unique?
=⇒ Are there multiple equilibria?

2. Uniqueness depends on the necessary and sufficient conditions involving the
column space spanned by

∑s
j=1MMM−jOOO−1

22 QQQ2·VVV being a subset of the column
space spanned by QQQ2·KKK =⇒ the unique linear approximate solution is (SLZ.7);
otherwise sunspot equilibria exist.

3. If ζt consists only of mean zero structural innovations, Etζt+j = 0 =⇒ the
infinite horizon forward looking term in the linear approximate solution
(SLZ.7) of the NKDSGE model disappears.
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Introduction to Estimation of Linearized DSGE Models, II

▶ Remember a state space system yields a VAR(∞) that implies a finite order VARMA.

1. Since a linearized DSGE model has a state space representation, apply
maximum likelihood estimation (MLE) to the model’s restricted VARMA.

2. Early examples are Altuǧ (1989, “Time-to-build and aggregate fluctuations:
Some new evidence,” IER 30, 889–920) and Bencivenga (1992, “An econometric
study of hours and output variation with preference shocks,” IER 33, 449–471).

3. The MLE of the restricted VARMA produces one-step ahead forecasts that are
only asymptotically normal given DSGE model shock innovations are Gaussian.

4. The objective of the MLE is built on these forecasts =⇒ affects the small sample
properties of the estimated DSGE model.

5. The Kalman filter produces exact finite sample forecasts of a VARMA.

▶ The likelihood of several RBC models is built using the Kalman filter by Sargent (1989,
“Two model of measurements and the investment accelerator,” JPE 97, 251–287).

1. Sargent endows each variable in the multivariate data vector of a permanent
income (PI) model with idiosyncratic AR(1) measurement error processes.

2. The several AR(1) measurement errors impose additional restrictions
on the VARMA that help to identify more coefficients of the PI model.

3. An unrestricted VAR(1) replaces the idiosyncratic AR(1) measurement errors
to estimate RBC models in Ireland (2001, “Technology shocks and the
business cycle: An empirical investigation,” JEDC 25, 703–719).

▶ Since Sargent (1989), macroeconometrics is rife with uses of the Kalman filter,
which suggests its ubiquitousness is cause for a short review.
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Introduction: Forecasting ARMAs

▶ Since the first generation of estimated DSGE models often relied on
VARMAs, let’s generate intuition about linear forecasts from univariate
ARMAs before constructing linear forecasts from the Kalman filter.

▶ The AR(1) model xt = θxt−1 + ϵt , Eϵt = 0 and Eϵ2
t = σ2

ϵ , yields the
forecasts Etxt+1 = θxt and Etxt+2 = θEtxt+1 = θ2xt , which imply

Etxt+j = θjxt .

▶ Observe the forecast of a AR(1) smoothly decays in an exponential fashion
when θ ∈ (0, 1), which results in

lim
j -→∞

Etxt+j = 0.
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Forecasting a AR(1): Conditional and Unconditional Variances

▶ Since xt is predetermined (i.e., known) at date t, the conditional variance
of the AR(1) of xt also contains useful information Vart

(
xt+1

)
= σ2

ϵ .

▶ Next, apply repeated substitution to show that

Vart
(
xt+2

)
= Var

(
θ2xt + ϵt+1 + θϵt

)
=
(
1 + θ2

)
σ2
ϵ .

▶ One more step ahead yields the conditional variance of

Vart(xt+3) = Var
(
θ3xt + ϵt+2 + θϵt+1 + θ2ϵt

)
=

(
1 + θ2 + θ4

)
σ2
ϵ .

▶ By induction Vart(xt+j) =
∑j−1
i=0 θ

2jσ2
ϵ =⇒ limj→∞ Vart

(
xt+j

)
= Var

(
xt
)
,

while the unconditional variance of xt is

Var
(
xt
)
=

∞∑
i=0

θ2jσ2
ϵ = σ2

ϵ
1 − θ2 .
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MA(q) Forecasting and Its Conditional Variance

▶ An important point is the first two unconditional moments of a AR(1) are
the limits of the first two conditional moments.

1. The limit of these conditional moments can be thought of as either
in time t -→∞ or the forecast horizon j -→∞.

2. This carries over to the MA(q) model.

▶ Consider the MA(q) model xt = ϵt +
∑q
i=1φiϵt−i.

1. Its one-step ahead forecast is Etxt+1 =
∑q
i=1φiϵt+1−i and

2. the j−period ahead forecast is Etxt+j =
∑q−j
i=0 φj+iϵt−i,

for j ≤ q, where φ0 ≡ 0.

▶ Likewise, the conditional variance of the MA(q) is simple to compute.

1. The conditional variance j-steps ahead is Vart
(
xt+j

)
=
∑q−j
i=0 φ

2
j+iσ

2
ϵ

and note Vart
(
xt+q

)
= φ2

qσ2
ϵ .

2. The unconditional variance is Var
(
xt
)
= Vart

(
xt
)
=
∑q
i=0φ

2
iσ

2
ϵ .
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The State Space Form of a AR(p)

▶ The tricks to forecasting ARMAs consist of recognizing
1. Etϵt+j = 0, Vart

(
ϵt+j

)
= σ2

ϵ , and to invert the AR(p)s and ARMA(p, q)s
to produce MA(∞)s.

2. =⇒ A problem is factoring the MA(∞) to compute its unknown coefficients.

▶ A way to avoid this problem is to write the ARMA(p, q) model in state space form.

▶ Consider the state space representation of a AR(p) model.
1. The system of state equations is St+1 = ΘΘΘSt + ϑt+1, where the state vector is
St+1 and ϑt =

[
ϵt 0 . . . 0

]
are p × 1 column vectors, E

{
ϑtϑ

′
t
}
= QQQ, and

ΘΘΘ =



θ1 θ2 . . . θp−1 θp

1 0 . . . 0 0

0 1 . . . 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 . . . 1 0


.

2. The system of observation equations, Xt = St , connects St to the observed
data, where the vector of observed data is Xt =

[
xt xt−1 . . . xt−p

]
,

=⇒ implicit is an identity matrix pre-multiplies the state vector.
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The State Space Representation of a ARMA(p, q)

▶ When p, q > 0, define the system of state equations

St+1 = AAASt + ξt+1, (SLZ.8)

where St and ξt are column vectors of length r = max
{
p, q + 1

}
, andAAA = ΘΘΘ, but is a

r × r matrix instead of p × p.

▶ The sample data is driven by St+1 according to

Xt = Φ′St , (SLZ.9)

where the r × 1 column vector Φ = [1 φ1 φ2 . . . φr−2 φr−1
]
.

▶ In general, state space systems can contain exogenous or pre-determined variables.

1. Exogenous or pre-determined variables are, for example, intercepts,
deterministic time trends, and exogenous stochastic variables.

2. White noise shocks, ωt , can also enter the observation equations (SLZ.9),
Xt = Φ′St + ωt , where E

{
ωtω

′
t
}
= R, which could be correlated with ξt .

3. These shocks would be interpreted as measurement error in Xt
and would be uncorrelated with ξt in this case.
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The State Space Representation of a ARMA(p, q), cont.

▶ The ARMA(p, q) is easily recovered from the system of state and
observation equations (SLZ.8) and (SLZ.9).

▶ The second, third, . . ., and ith rows of the system of state equations (SLZ.8)
are

1. S2,t+1 = S1,t , S3,t+1 = S2,t = S1,t−1, . . . , Si,t+1 = Si−1,t = LiSi,t .
2. =⇒ The first row is S1,t+1 =

∑r
i=1 θiS1,t−i + ϵt+1 a θ(L)S1,t+1 = ϵt+1,

where θ
(
L
)
= 1 − θ1L − θ2L2 − . . . − θrLr .

▶ For the ARMA(p, q), the observer equation (SLZ.9) gives Xt = φ(L)S1,t ,
where φ

(
L
)
= 1 + φ1L + φ2L2 + . . . + φr−1Lr−1.

1. Multiply both sides of the last equation by θ(L) to find θ
(
L
)
Xt = θ

(
L
)
φ
(
L
)
S1,t .

2. Since θ
(
L
)
φ
(
L
)
= φ

(
L
)
θ
(
L
)
, the result is θ

(
L
)
Xt = φ

(
L
)
ϵt , which is the

ARMA(p, q).

Jim Nason
(
Lecture: Introduction to NK-DSGE Models

)
NK-DSGE Model: Construct, Solve, and Estimate



A NKDSGE Model, Its Linearization, and Solution

A Brief Review of the Kalman Filter & Smoother

Bayesian Analysis of Linearized NKDSGE Models

The Kalman Filter’s Nuts and Bolts

The Kalman Smoother Algorithm

The Likelihood via the Kalman Filter

The Kalman Filter: Outputs and Uses

▶ The system of state and observer equations define the Kalman filter (KF).

▶ The KF estimates the latent, hidden, or unobserved state, St , of a linear time
series model using conditional linear projections of the observables, Yt .

▶ The KF algorithm unwinds or decomposes Yt into St , and shock innovations
to the state, ξt , and observables, ωt .

▶ The KF decomposition produces a sequence of linear updates of the states
from t=0 to t+j that yield a forecast of Yt+j , its MSE, and the MSE of St+j
conditional on date t information.

▶ These forecasts are exact =⇒ there is no reliance on the forecast horizon
going to infinity (convergence results or asymptotic theory).

▶ Since the KF generates forecasts of any linear times series model that can be
cast in state space form, these elements are available to construct likelihood
functions of ARMA models, time-varying coefficient VAR models, etc.

▶ Classic texts on the KF and filtering in general are Anderson and Moore
(2005, Optimal Filtering, Mineola, NY: Dover Publications) and Whittle
(1983, Prediction and Regulation: By Linear Least-Square Methods,
2nd Edition, Revised, Minneapolis, MN: University of Minnesota Press).
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The Kalman Filter: Set Up

▶ Restate the state equation

St+1 = AAASt + BBBξt+1, (KF.1)

where dim
(
St
)
= k, dim

(
ξt
)
=m, m ≤ k, BBBBBB′ = QQQ, and ξt+1 ∼ N

(
0m×1, Im

)
.

▶ The adjustments to the observer equations are

Yt = FFFZt + CCCSt + DDDωt , (KF.2)

where dim
(
Yt
)
= n, Zt is a p×1 vector of exogenous and/or pre-determined

variables added to the observations equations [also could have exogenous
and/or pre-determined variables in the state equations (KF.1)], dim

(
ωt
)
= r,

r ≤ n, DDDDDD′ =RRR, and ωt+1 ∼ N
(
0r×1, Ir

)
.

▶ Further, assume E
{
ωtξ′s

}
= 0r×m for all dates t and s =⇒ this assumption can be

relaxed with only minor changes to the Kalman filter algorithm; see Harvey (1989,
section 3.2.4, pp. 112–113).

▶ For the moment, assumeAAAk×k, BBBk×m, CCCn×k, DDDn×r , QQQm×m, RRRr×r , and FFFn×p are
non-stochastic.

▶ Label the state space representation (KF.1) and (KF.2) the ABCDs state space model.

Jim Nason
(
Lecture: Introduction to NK-DSGE Models

)
NK-DSGE Model: Construct, Solve, and Estimate



A NKDSGE Model, Its Linearization, and Solution

A Brief Review of the Kalman Filter & Smoother

Bayesian Analysis of Linearized NKDSGE Models

The Kalman Filter’s Nuts and Bolts

The Kalman Smoother Algorithm

The Likelihood via the Kalman Filter

The Kalman Filter: Useful Definitions

▶ Define the linear projection of St+1 on the entire histories of Y and Z
from date 1 to date t and a constant as

Ŝt+1|t ≡ E
{
St+1

∣∣Wt
}
,

where Wt ≡
[
Y′t Y′t−1 . . . Y′1 Z′t Z′t−1 . . . Z′1

]′
.

1. The linearity of the Kalman filter implies E{·} yields equivalent
forecasts to the projection operator.

2. The Kalman filter computes Ŝ1|0, Ŝ2|1, . . . , ŜT |T−1 recursively.

3. Relying on t -→ ∞ is unnecessary to operate the Kalman filter.

▶ The mean square error (MSE) of Ŝt+1|t is computed as

Pt+1|t ≡ E
{(
St+1 − Ŝt+1|t

)(
St+1 − Ŝt+1|t

)′}
. (KF.3)

▶ The analogy is to the conditional variance of St+1.
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The Kalman Filter: Initialization, I

▶ To start the Kalman filter, must decide how to compute Ŝ1|0 and P1|0.

▶ Since no observations on Y or X exist (other than the intercept), the
best linear forecast of Ŝ1|0 is its unconditional expectation S1, E

{
S1
}
.

▶ The corresponding MSE is P1|0 ≡ E
{(
S1 − E

{
S1
}) (

S1 − E
{
S1
})′}.

▶ Observe from the state equations (KF.1) the unconditional forecast
of St+1 is E

{
St+1

}
=AAAE

{
St
}
.

▶ AssumingAAA is full rank and its eigenvalues are inside the unit circle,
implies St+1 is covariance stationary.

▶ Combined with Gaussian innovations ξt in the system of state equations
(KF.1) gives the unconditional forecast

(
Ik −AAA

)
E
{
St
}
= 0k×1.

1. A unique solution yields E
{
St
}
= 0k×1 because

(
Ik − AAAAAAAAA

)
is non-singular.

2. =⇒ Ŝ1|0 = 0k×1, given the system of state equations (KF.1).
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The Kalman Filter: Initialization, II

▶ Note P1|0 is equivalent to the unconditional variance of S =⇒ post-multiply (KF.1)
by St+1 and take the unconditional expectation through

E
{
St+1S′t+1

}
= E

{(
AAAAAAAAASt + DDDξt+1

)(
AAASt + DDDξt+1

)′}
= AAAE

{
StS′t

}
AAA′ + DDDE

{
ξt+1ξ

′
t+1

}
DDD′.

▶ The lack of cross-product terms results from the assumption that ξt and ωt
are uncorrelated at all leads and lags.

▶ The definition E
{
St+1S′t+1

}
≡ ΩΩΩS allows the last equation to be written

ΩΩΩS = AAAΩΩΩSAAA′ + QQQ.

▶ The problem is there are no easy to use numerical methods to solve this quadratic
equation for the elements of ΩS .
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The Kalman Filter: Initialization, III

▶ This problem is overcome using the vec(·) operator.

▶ Pass the vec(·) operator through the last equation to find

vec
(ΩΩΩS) = [

Ik2 −
(
AAA
O

AAA
)]−1

vec
(
QQQ
)
.

▶ This result follows from applying the rule vec
(
G1G2G3

)
=
(
G′3
⊗

G1
)
vec
(
G2
)

to the quadratic term,AAAΩΩΩSAAA′.

▶ The fact P1|0 = ΩΩΩS produces the date 1 MSE conditional on date zero information,
the unconditional variance of S.

▶ Since the eigenvalues ofAAA are inside the unit circle, the solution of P1|0 is bounded

vec
(
P1|0

)
=
[
Ik2 −

(
AAA
O

AAA
)]−1

vec
(
QQQ
)
. (KF.4)

▶ If not, P1|0 is a free parameter of the Kalman filter; also true if E
{
St
}
≠ 0k×1.

▶ In this case, a guess must be made about P1|0, typically a multiple of Ik2 .
=⇒ A diffuse prior about the unconditional variance of ΩΩΩS .
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The Kalman Filter: Forecast Definitions

▶ Given Ŝ1|0 and P1|0, the goal is to compute

{
Ŝ2|1, P2|1

}
,
{
Ŝ3|2, P3|2

}
, . . . ,

{
Ŝt|t−1, Pt|t−1

}
, . . . ,

{
ŜT |T−1 PT |T−1

}
.

▶ Since the structure of the Kalman filter algorithm is the same for each date t,
consider the forecasts for Ŝt|t−1 and Pt|t−1, but remember

Wt ≡
[
Y′t Y′t−1 . . . Y′1 Z′t Z′t−1 . . . Z′1

]′
.

▶ Next, apply the expectations operator to the state equation (KF.1) to find

E
{
St
∣∣Wt−1

}
= Ŝt|t−1.

▶ Similarly, define the conditional forecast of Yt using the expectations operator

Ŷt|t−1 ≡ E
{
Yt
∣∣Wt−1

}
.
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The Kalman Filter: Forecasting Yt

▶ The system of observer equations (KF.2) also yield

E
{
Yt
∣∣Zt , St} = FFFZt + CCCSt .

▶ The KF needs to forecast Ŷt|t−1, which is constructed using

1. a forecast of St computed on the state equations (KF.1) given St =⇒ E
{
St
∣∣St},

2. and by applying the law of iterated expectations to this forecast after
conditioning on Yt and Zt

E
{
E
{
St
∣∣St}∣∣Yt−1, Zt

}
= E

{
St
∣∣Yt−1, Zt

}
= Ŝt|t−1.

▶ Steps 1 and 2 imply the exact forecast of Yt is

Ŷt|t−1 = FFFZt + CCCŜt|t−1, (KF.5)

1. which relies on the known coefficient matricesFFF and CCC, the predetermined and
deterministic variables in the vector Zt , and the forecast Ŝt|t−1.

2. =⇒ The forecast Ŷt|t−1 is exact because it is grounded on population moments,
known coefficient matrices, and predetermined and deterministic variables.
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The Kalman Filter: Forecasting Yt , cont.

▶ The observer equations (KF.2) and the observer forecast generating equations (KF.5)
are responsible for the system of observer forecast errors

Yt − Ŷt|t−1 = FFFZt +CCCSt +ωt −
(
FFFZt + CCCŜt|t−1

)
= CCC

(
St − Ŝt|t−1

)
+DDDωt . (KF.6)

▶ The system of forecast errors (KF.6) produces the MSE of forecasts of Yt

E
{(
Yt − Ŷt|t−1

)(
Yt − Ŷt|t−1

)′}
= E

{
CCC
(
St − Ŝt|t−1

)(
St − Ŝt|t−1

)′
CCC′ + DDDωtω

′
tDDD′

}
, (KF.7)

where cross-product terms disappear because E
{
ωt

(
St − Ŝt|t−1

)′}
= 0.

▶ Construct the MSE of Yt ’s forecast errors by substituting the MSE of Ŝt|t−1, equations

(KF.3), and E
{
ωtω

′
t+j
}
=RRR into the right hand side of equations (KF.7) to find

E
{(
Yt − Ŷt|t−1

)(
Yt − Ŷt|t−1

)′}
= CCCPt|t−1CCC′ + RRR, (KF.8)

given only the known coefficient matrices CCC andRRR and the unknown MSE, Pt+1|t .
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The Kalman Filter: Forecasting St

▶ The system of equations (KF.5) need Ŝt|t−1, to generate the forecast Ŷt|t−1.

▶ Besides an exact forecast of St conditional on date t−1 information, Wt−1,
the KF yields an exact forecast of St conditional on Wt

Ŝt|t = E
{
St
∣∣Yt , Yt−1, . . . , Zt , Zt−1, . . .

}
= E

{
St
∣∣Yt}.

▶ The previous results depends on the rule for updating a linear projection, which
is discussed in Hamilton (1994, sections 4.1, pp. 72–77 and 4.4, pp. 92–100).

1. At date t, the best forecasts of Y and Z are the realizations of these objects
at date t, Yt and Zt .

2. At date t, the best linear forecast of the latent state vector, St , consists of
the forecast at date t−1, Ŝt|t−1, and the uncertainty that surrounds Ŝt|t .

3. The uncertainty surrounding the forecast Ŝt|t is comprised of the forecast

errors St − Ŝt|t−1 and Yt − Ŷt|t−1.
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The Kalman Filter: Forecasting St , cont.

▶ Using the the rule for updating a linear projection gives

Ŝt|t = Ŝt|t−1 + E
{(
St − Ŝt|t−1

)(
Yt − Ŷt|t−1

)′}

×
[
E
{(
Yt − Ŷt|t−1

)(
Yt − Ŷt|t−1

)′}]−1 (
Yt − Ŷt|t−1

)
. (KF.9)

▶ The MSE terms represent the “LS” estimate of the response of the date t forecast
error of St to the date t forecast error of Yt conditional on date t−1 information.

▶ The first MSE term of equations (KF.9) is computed with the MSE of Yt conditional
on date t−1 information, equations (KF.8)

E
{(
St − Ŝt|t−1

)(
Yt − Ŷt|t−1

)′}
= E

{(
St − Ŝt|t−1

) [
CCC
(
St − Ŝt|t−1

)
+ DDDωt

]′}
= E

{(
St − Ŝt|t−1

)(
St − Ŝt|t−1

)′}
CCC′

= Pt|t−1CCC′,

where the last equality follows from the MSE of Ŝt|t−1 found in equations (KF.3).
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The Kalman Filter: Forecasting St , cont.

▶ Finally, substitute for the forecast of Yt conditional on date t−1 information, the
equations (KF.5), and its associated MSE, equations (KF.8),

Ŝt|t = Ŝt|t−1 + Pt|t−1CCC′
[
CCCPt|t−1CCC′ + RRR

]−1 (
Yt − FFFZt − CCCŜt|t−1

)
. (KF.10)

which is exact because it is grounded on population moments, known coefficient
matrices, and predetermined and deterministic variables.

▶ The definition of the MSE of Ŝt|t is Pt|t ≡ E
{(
St − Ŝt|t

)(
St − Ŝt|t

)′}
, which can be

computed employing similar tricks to produce

Pt|t = Pt|t−1 − Pt|t−1CCC′
[
CCCPt|t−1CCC′ + RRR

]−1
CCCPt|t−1. (KF.11)

▶ Notice the MSE of Ŝt|t , Pt|t , equals the update of Pt|t−1 plus the MSE of the forecast

error of Yt ; see the updating equations (KF.10) of Ŝt|t .
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The Kalman Filter: Forecasting St , cont.

▶ The definition Ŝt+1|t ≡ E
{
St+1

∣∣Yt} and the system of state equations (KF.1) yield

Ŝt+1|t = AAAE
{
St+1

∣∣Yt} + BBBE
{
ξt+1

∣∣Yt} = AAAŜt|t .

▶ Replace Ŝt|t with its update given in equation (KF.10) to find

Ŝt+1|t = AAAŜt|t−1 + Kt
(
Yt − FFFZt − CCCŜt|t−1

)
, (KF.12)

where Kt ≡AAAPt|t−1CCC′
[
CCCPt|t−1CCC′ + RRR

]−1
.

▶ Equation (KF.12) provides the forecast of St+1 conditional on date t information
given the known coefficient matricesAAA, CCC, andRRR, the unknown
MSE Pt|t−1, and the “innovation” in Yt .

▶ Once Pt|t−1 is computed, Ŷt+1|t is constructed with equation (KF.5).
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The Kalman Filter: Forecasting St , finis

▶ Calculating the MSE of Ŝt+1|t , equation (KF.3), starts with the fact Ŝt+1|t =AAAŜt+1|t =⇒

Pt+1|t = E
{(
AAASt + BBBξt − AAASt|t

)(
AAASt + BBBξt − AAASt|t

)′}
= AAAE

{(
St − St|t

)(
St − St|t

)′}
AAA′ + BBBE

{
ξtξ

′
t
}
BBB′,

= AAAPt|tAAA′ + QQQ. (KF.13)

▶ Recover the updating equation for the MSE of St+1 conditional on date t information
by substituting Pt|t from (KF.11) into (KF.13)

Pt+1|t = AAAPt|t−1AAA′ − KtCCCPt|t−1AAA′ + QQQ. (KF.14)

▶ Given S1 and P1|0, all the objects on the right hand sides of (KF.12) and (KF.14) are
known with either certainty or are already computed recursively by the Kalman filter
algorithm.
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The Kalman Filter: Odds and Ends

▶ The KF is a device for estimating the latent state vector of a macro model
=⇒ the hidden state vector of an aggregate economy.

▶ These notes are just one of many ways to define, express, and solve the KF
to accomplish this task.

▶ This approach is among the most useful ways to learn the KF algorithm,
especially for many time series model employed by macroeconomists.

▶ When the KF is connected to a macro model, the unobserved or latent state
vector St+1 may possess a structural interpretation.

1. This suggests there is interest in estimates of Ŝt+1|T =⇒ the estimate of
St+1 conditional on the entire sample from date t = 1 through date T .

2. Reverse or backward filtering recursions yield a sequence of estimates
of Ŝt+1|T and associated MSEs =⇒ Kalman smoothing; see Hamilton
(1994, section 13.5, pp. 394–397).
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A Brief Review of the Kalman Filter

▶ The KF produces estimates of the state vector, St+1, Ŝt+1|t ≡ E
{
St+1

∣∣Wt
}
, and

its MSE, Pt+1|t ≡ E
{(
St+1 − Ŝt+1|t

)(
St+1 − Ŝt+1|t

)′}
.

▶ The recursions generating these estimates are

Ŝt|t = Ŝt|t−1 + Pt|t−1CCC′
[
CCCPt|t−1CCC′ +RRR

]−1(
Yt −FFFZt −CCCŜt|t−1

)
, (KF.15)

Ŝt+1|t = AAAŜt|t , (KF.16)

Pt|t = Pt|t−1 − Pt|t−1CCC′
[
CCCPt|t−1CCC′ +RRR

]−1
CCCPt|t−1, (KF.17)

Pt+1|t = AAAPt|tAAA′ + QQQ. (KF.18)

▶ Estimates of Ŝt+1|t and Pt+1|t are conditional on Wt ≡
[
Y′t Y′t−1 . . .Y′1 Z′t Z′t−1 . . .Z′1

]′
.

1. Estimates grounded only in data from date 1 to date t are useful as “real time”
(in-sample) forecasts or as generated regressors.

2. Examples are “real time” estimates of the hidden state of the business cycle or,
say, regress sample output growth on lags of estimated TFP growth to test
predictive information of the latter for the former.

▶ The KF estimates of the Ŝt|t are not the model’s structural estimates of the states.
1. Structural estimates rely on the entire sample =⇒ the Kalman smoother (KS).
2. The KS produces two-sided estimates of St =⇒ run the KF forward from t = 1

to T and the smoother backwards from date T to t = 1 =⇒ Ŝt|T and Pt|T .
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The Kalman Smoother Algorithm, I

▶ A goal of the KS is to construct
{
Ŝt|T

}T
t=1

by estimating Ŝt|t+1, given knowledge of

St+1 =⇒ the linear projection of St on St+1 and Wt

E
{
St
∣∣St+1, Wt

}
= Ŝt|t + E

{(
St − Ŝt|t

)(
St+1 − Ŝt+1|t

)′}

×
[
E
{(
St+1 − Ŝt+1|t

)(
St+1 − Ŝt+1|t

)′}]−1 (
St+1 − Ŝt+1|t

)
. (KS.1)

▶ Since E
{(
St − Ŝt|t

)(
St+1 − Ŝt+1|t

)′}
= E

{(
St − Ŝt|t

)(
AAASt + BBBξt+1 − AAAŜt|t

)′}
and E

{
Stξt+1

}
= E

{
St|tξt+1

}
= 0, E

{(
St − Ŝt|t

)(
AAASt + BBBξt+1 − AAAŜt|t

)′}
=

E
{(
St − Ŝt|t

)(
St − Ŝt|t

)′}
AAA′ = Pt|tAAA′, which after substitution into (KS.1)

yields the exact forecast

E
{
St
∣∣St+1, Wt

}
= Ŝt|t + Pt|tAAA′P−1

t+1|t
(
St+1 − Ŝt+1|t

)
,

= Ŝt|t + HHHt
(
St+1 − Ŝt+1|t

)
, (KS.2)

whereHHHt = Pt|tAAA′P−1
t+1|t .
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The Kalman Smoother Algorithm, II
▶ By induction, E

{
St
∣∣St+1, Wt

}
= E

{
St
∣∣St+1, WT

}
=⇒ the additional information in

Yt+j and Zt+j , j ≥ 1, is already contained in St+1 or St − E
{
St
∣∣St+1, Wt

}
⊥⊥⊥ St+1.

▶ However, conditioning the state only on WT , E
{
St
∣∣WT

}
, results in

E
{
St
∣∣WT

}
= Ŝt|t + Pt|tAAA′P−1

t+1|t
(
E
{
St+1

∣∣WT

}
− Ŝt+1|t

)
,

Ŝt|T = Ŝt|t + HHHt
(
Ŝt+1|T − Ŝt+1|t

)
, (KS.3)

where the exact forecasts Ŝt|t and Ŝt+1|t are untouched depending only on
information up to and including date t.

▶ First run the KF recursions using equations (KF.15), (KF.16), (KF.17), and (KF.18)

to construct
{
Ŝt|t , Ŝt+1|t , Pt|t , Pt+1|t

}T
t=1

.

1. The last element of
{
Ŝt|t

}T
t=1

is equated to the smoothed quantity ŜT |T , and

2. engage the last two sequences to create
{
HHHt

}T−1

t=1
usingHHHt = Pt|tAAA′P−1

t+1|t .

3. =⇒ At date T−1, compute ŜT−1|T = ŜT−1|T−1 + HHHT−1

(
ŜT |T − ŜT |T−1

)
, where

the KF is the source of ŜT−1|T−1, ŜT |T−1, andHHHt .

▶ Repeat this process from dates t = T−2, . . . , 1 to finish constructing
{
Ŝt|T

}T
t=1

,

where the relevant recursion is the system of equations (KS.3).
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The Kalman Smoother Algorithm, III

▶ The KS also produces sequences of the MSEs of
{
Ŝt|T

}T
t=1

.

▶ The MSE, Pt|T , is constructed in several steps.

1. Add St to each side the system of equations (KS.3) after multiplying by −1

St − Ŝt|T = St − Ŝt|t − HHHt

(
Ŝt+1|T − Ŝt+1|t

)
,

St − Ŝt|T + HHHt Ŝt+1|T = St − Ŝt|t + HHHt Ŝt+1|t .

2. Multiple the latter system of equations by its transpose

E
{(
St − Ŝt|T

)(
St − Ŝt|T

)′}
+ HHHtE

{
Ŝt+1|T Ŝ′t+1|T

}
HHH ′
t

= E
{(
St − Ŝt|t

)(
St − Ŝt|t

)′}
+ HHHtE

{
Ŝt+1|t Ŝ′t+1|t

}
HHH ′
t ,

3. where Ŝt+1|T ⊥⊥⊥ St − Ŝt|T and Ŝt+1|t ⊥⊥⊥ St − Ŝt|t explain the absence of
cross-product terms.
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The Kalman Smoother Algorithm, IV

▶ The next step recognizes the last equality gives

Pt|T = Pt|t + HHHtE
{
Ŝt+1|t Ŝ′t+1|t − Ŝt+1|T Ŝ′t+1|T

}
HHH ′
t . (KS.4)

▶ The difference of covariance matrices E
{
Ŝt+1|t Ŝ′t+1|t − Ŝt+1|T Ŝ′t+1|T

}
is evaluated by

adding and subtracting E
{
St+1S′t+1

}
(
E
{
St+1S′t+1

}
− E

{
Ŝt+1|T Ŝ′t+1|T

})
−
(
E
{
St+1S′t+1

}
− E

{
Ŝt+1|t Ŝ′t+1|t

})

= E
{(
St+1 − Ŝt+1|T

)(
St+1 − Ŝt+1|T

)′}
− E

{(
St+1 − Ŝt+1|t

)(
St+1 − Ŝt+1|t

)′}
.

1. where the cross-products E
{
Ŝt+1Ŝ′t+1|T

}
= E

{(
Ŝt+1 − Ŝ′t+1|T + Ŝ′t+1|T

)
Ŝ′t+1|T

}
= E

{(
Ŝt+1 − Ŝ′t+1|T

)
Ŝ′t+1|T

}
+ E

{
Ŝ′t+1|T Ŝ′t+1|T

}
= E

{
Ŝ′t+1|T Ŝ′t+1|T

}
and

2. E
{
Ŝt+1Ŝ′t+1|t

}
= E

{(
Ŝt+1 − Ŝ′t+1|t + Ŝ′t+1|t

)
Ŝ′t+1|t

}
= E

{(
Ŝt+1 − Ŝ′t+1|t

)
Ŝ′t+1|t

}
+ E

{
Ŝ′t+1|t Ŝ′t+1|t

}
= E

{
Ŝ′t+1|t Ŝ′t+1|t

}
.

3. =⇒ E
{
Ŝt+1|t Ŝ′t+1|t − Ŝt+1|T Ŝ′t+1|T

}
= Pt+1|T − Pt+1|t .
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The Kalman Smoother Algorithm, V

▶ The KS algorithm finishes by substituting

E
{
Ŝt+1|t Ŝ′t+1|t − Ŝt+1|T Ŝ′t+1|T

}
= Pt+1|T − Pt+1|t

into the system of equations (KS.4) to obtain

Pt|T = Pt|t + HHHt

(
Pt+1|T − Pt+1|t

)
HHH ′
t . (KS.5)

▶ The system of equations (KS.5) is the updating recursion of Pt|T ,

which generates the sequence
{
Pt|T

}T
t=1

.

▶ This completes the KS algorithm in which the two-sided smoothed

estimates of
{
Ŝt|T

}T
t=1

and
{
Pt|T

}T
t=1

are computed using the

recursions (KS.3) and (KS.5), respectively.
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The Kalman Filter: Parameter Estimation

▶ The KF also provides a mechanism for estimating the elements of the coefficient
matricesAAA, BBB, CCC,DDD, FFF , QQQ, andRRR.

▶ The assumptions S1 and
{
ωt , ξt

}T
t=1 are drawn from a multivariate Gaussian

distribution imply

1. the forecasts
{
Ŝt|t−1, Yt|t−1

}T
t=1

are optimal conditional on Zt and Yt−1, and

2. Yt is Gaussian conditional on Zt and Yt−1 with mean and variance computed

in (KF.5) and (KF.8) =⇒ Yt
∣∣∣Zt , Yt−1 ∼ N

(
FFFZt + CCCŜt|t−1, CCCPt|t−1CCC′ + RRR

)
.

3. =⇒ The (natural) log of the conditional joint density function of Yt is

ln
[
fYt

∣∣Zt ,Yt−1

(
Yt
∣∣∣Zt , Yt−1

)]
= −n

2
ln
(
2π
)
− 1

2
ln
∣∣∣CCCPt|t−1CCC′ + RRR

∣∣∣
− 1

2

(
Yt − FFFZt − CCCŜt|t−1

)′ [
CCCPt|t−1CCC′ + RRR

]−1 (
Yt − FFFZt −CCCŜt|t−1

)
. (KS.6)

▶ Compute the sample log likelihood by summing (KS.6) across all dates t

T∑
t=1

ln
[
fYt

∣∣Zt , Yt−1

(
Yt
∣∣∣Zt , Yt−1

)]
. (KS.7)

Jim Nason
(
Lecture: Introduction to NK-DSGE Models

)
NK-DSGE Model: Construct, Solve, and Estimate



A NKDSGE Model, Its Linearization, and Solution

A Brief Review of the Kalman Filter & Smoother

Bayesian Analysis of Linearized NKDSGE Models

The Kalman Filter’s Nuts and Bolts

The Kalman Smoother Algorithm

The Likelihood via the Kalman Filter

The Kalman Filter: Parameter Estimation, cont.

▶ There are several implementation issue involved with estimating

1. AAA, BBB, CCC, DDD, FFF , QQQ, andRRR by maximizing the sample log likelihood (KS.7) given
log of the conditional joint density function of Yt , which is equation (KS.6).

2. Identification of the coefficients of interest is difficult; see the example
of a MA(p) in Hamilton (1994, pp. 387–388).

3. When theAAA, BBB, CCC, DDD, FFF , QQQ, andRRR matrices are estimated by ML, uncertainty
about the smoothed estimates of St+1, Ŝt+1|T , exists.

4. Although the MSE of the smoothed estimate Ŝt+1|T (i.e., the uncertainty
associated with the KF algorithm) is available, there exists uncertainty in the
smoother because of the sampling uncertainty of the coefficient estimates.

5. The sampling uncertainty of the MLE requires Monte Carlo or simulation
methods necessary to quantify the uncertainty of the MSE of estimates
of St produced by the KF and/or KS.

6. It is often not reasonable to assume that the shock innovations ξt and ωt are
drawn from a Gaussian distribution =⇒ MLE remain asymptotically consistent,
but not asymptotically efficient.

7. Use quasi-MLE methods to construct an estimator of the covariance matrix
of the coefficient estimates; see Hamilton (1994, section 13.5 p. 389).
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Introduction to Bayesian Estimation of DSGE Models

▶ There are several reasons Bayesian times series methods are often preferred
by macroeconomists studying DSGE models.

1. Advances in Bayesian theory give macroeconomists a greater array of tools
to engage when estimating and evaluating DSGE models.

2. Computational power has shrunk the time necessary to estimate and evaluate
DSGE models using Markov chain Monte Carlo (MCMC) simulators.

3. DSGE models often pose identification problems for frequentist estimators
that no amount of data and computing power can overcome.

▶ Macroeconomists find Bayesian estimation and evaluation methods useful
because DSGE models are often seen as abstractions of actual economies.

▶ A frequentist econometrician might say that DSGE models are misspecified
versions of the true model.

1. This approach conflicts with views macroeconomists often hold about DSGE
models =⇒ the mantra is “All models are false.”

2. Since Bayesians deny the existence of a true model, employing Bayesian tools
to study DSGE models matches the views held by many macroeconomists.
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Introduction: Frequentist Estimation of DSGE Models

▶ DSGE models have been estimated using frequentist methods since the late 1980s.

▶ Frequentist estimation of DSGE models rely on maximum likelihood estimation
(MLE), generalized methods of moments (GMM), or indirect inference (II).

1. MLE of the restricted VARMA of the linearized DSGE model is carried out by
Altuǧ (1989) and Bencivenga (1992).

2. Christiano and Eichenbaum (1992, “Current real-business-cycle theories and
aggregate labor-market fluctuations,” Ameican Economic Review 82, 430–450)
estimate a RBC model’s parameters using GMM.

3. II estimation of linearized DSGE models is developed by Smith (1993,
“Estimating nonlinear time-series models using simulated vector
autoregressions,” Journal of Applied Econometrics 18, S63–S84 and
Gourieroux, Monfort, and Renault (1993, “Indirect Inference,”
Journal of Applied Econometrics 18, S85–S118).

▶ A recent survey of the GMM estimator applied to DSGE model is Ruge-Murcia (2013,
“Generalized method of moments estimation of DSGE models,” in Handbook of
Research Methods and Applications on Empirical Macroeconomics,
N. Hashimzade and M. Thornton (eds.), Edward Elgar: Cheltenham, UK).

▶ Dridi, Guay, and Renault (2007, “Indirect inference and calibration of dynamic
stochastic general equilibrium models,” Journal of Econometrics, 136, 397–430)
is a useful update of the II estimator employed to linearized DSGE models.
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Introduction: Identification of DSGE Models, I

▶ Identification matters for ML estimation of DSGE models.
1. Altuǧ (1989), Bencivenga (1992), and Ireland (2001) adopt one approach

to solve the DSGE model identification problem.
2. =⇒ Identify only a subset of RBC model parameters after pre-setting or

calibrating the remaining parameters.

▶ Analysis by Hall (1996, “Overtime, effort, and the propagation of business
cycle shocks,” JME 38, 139–160) suggests a reason for this practice.

1. Whether ML or GMM is being used, these estimators rely on the same
(unconditional) sample (means) and theoretical (steady state) information
about first moments to identify DSGE model parameters.

2. Although ML is a full information estimator, which engages all the moment
conditions expressed by the DSGE model, GMM and ML rely on the same
first moment information for identification.

▶ The frequentist assumption of a true model binds the identification
problem to the issue of DSGE model misspecification.

1. Can any parameters of a DSGE model be identified when it is misspecified?
2. For example, frequentist ML can lose its appeal when models are known

to be misspecified =⇒ could use quasi-MLE instead.

▶ Misspecification is a problem about the population properties of a model
=⇒ no amount of data or computing power will solve problems related to
the identification and misspecification of DSGE models.
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Introduction: Identification of DSGE Models, II

▶ A frequentist response to DSGE identification problems is II.
1. Smith (1993) and Gourieroux, Monfort, and Renault (1993) develop an

II estimator and specification tests with standard asymptotic properties
even though the true likelihood of the DSGE model is unknown.

2. The II approach to DSGE model estimation and evaluation is anticipated
by Gregory and Smith (1990, “Calibration as estimation,” Econometric Reviews
9, 57–89) and (1991, “Calibration as testing: Inference in simulated
macroeconomic models,” JBES 9, 297–303).

3. The II estimator minimizes a GMM-like criterion in the distance between
a vector of theoretical and sample moments, which need to be observed
in sample data and predicted by the DSGE model.

4. Estimating DSGE model parameters is “indirect” because the GMM-like
criterion matches sample and theoretical moments not explicitly tied
to the DSGE model =⇒ not the likelihood of the DSGE model.

5. Theoretical moments are produced by simulating synthetic data from
the solution of the DSGE model.

6. Apply a classical optimizer to the GMM-like criterion =⇒ maximize its
objective by moving the theoretical moments closer to the sample
moments by updating the DSGE model parameters while holding the
structural shock innovations fixed.

7. CEE (2005) estimate a NKDSGE model by matching its theoretical
impulse responses to those of an estimated SVAR =⇒ an II estimator.

8. A discussion of identification problems facing this version of II
is found in Canova and Sala (2009, “Back to square one:
Identification issues in DSGE Models,” JME 56, 431–449).
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Introduction: Identification of DSGE Models, III

▶ Dridi, Guay, and Renault (2007) extend the II by recognizing DSGE models are false.

1. A DSGE model is an abstraction of reality and hence misspecified.

2. Separate the part of a DSGE model having economic content from
the misspecified part.

3. =⇒ Split the vector of DSGE model parameters Γ into the parameters
having compelling economic content, Γ1, and the remaining nuisance
or pseudo-parameters, Γ2, that lack economic interest.

4. Cannot ignore Γ2 because it is integral to the DSGE model =⇒ fix Γ2
or calibrate it with sample information.

5. Γ2 contributes to identifying Γ1, but without polluting it with the
misspecification of the DSGE model encapsulated by Γ2.

6. =⇒ Dridi, Guay, and Renault construct an asymptotic distribution
of Γ1 that accounts for misspecification of the DSGE model.

7. The sampling theory is useful for testing misspecification of the
DSGE model and to gauge its ability to match the data.
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Introduction: Identification of DSGE Models, IV

▶ Does identification of DSGE models matter for Bayesians?
1. Many Bayesians argue identification rests on having a well posed prior =⇒ a

proper prior independent of the data and has a density that integrates to one.

2. If the data are uninformative, prior and posterior distributions can be
equivalent; see Poirier (1998, “Revising beliefs in nonidentified models,”
Econometric Theory 14, 483–509).

▶ This problem differs from identification problems frequentists face.
1. Identification of a model is a problem that arises in population for a

frequentist estimator, while

2. for a Bayesian the source of the equivalence is data interacting with the prior.

3. Poirier provides analysis suggesting that Γ be split into those parameters for
which the data are informative, Γ1, given the priors from those, Γ2, for which
this is not possible.
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Introduction: Identification of DSGE Models, V

▶ Bayesians avoid having to assume there exists a true or correctly specified DSGE
model because of the likelihood principle (LP).

1. The LP is a foundation of Bayesian statistics =⇒ all evidence about a DSGE
model is contained in its likelihood conditional on the data; see Berger and
Wolpert (1988, The Likelihood Principle, Second Edition, Hayward, CA:
Institute of Mathematical Statistics).

2. Bayesian likelihood-based evaluation is consistent with the belief “all models
are false” =⇒ there is no true DSGE model because this class of models is
afflicted with incurable misspecification.

▶ Bayesian model evaluation tools are also consistent with another widely expressed
belief of macroeconomists, “It takes a model to beat a model.”

1. Since the likelihood of a DSGE model summarizes its probabilistic evaluation
by the data, the likelihoods of a suite of DSGE models contains all the evidence
needed to assess which “best” fits the data.

2. This suggests Bayesian estimation of DSGE models is not an ends in itself, but
a means to the end of conducting model evaluation.
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Introduction: The Posterior of DSGE Models, I
▶ There exist several Bayesian approaches to estimate DSGE models.

▶ Likelihood-based Bayesian estimation constructs the posterior distribution,
P
(Γ∣∣Y1:T

)
, of DSGE model parameters conditional on sample data Y1:T of length T .

▶ Bayesian estimation exploits the fact that the posterior distribution equals the DSGE

model likelihood, L
(
Y1:T

∣∣∣Γ), multiplied by the econometrician’s priors on the DSGE

model parameters, P
(Γ), up to a factor of proportionality

P
(Γ∣∣∣Y1:T

)
∝ L

(
Y1:T

∣∣∣Γ)P(Γ). (EST.1)

▶ Bayesian estimation of DSGE models is confronted by posterior distributions too
complicated to evaluate analytically.

▶ The complication arises because the mapping from a DSGE model to its L
(
Y1:T

∣∣∣Γ) is

nonlinear in Γ =⇒ engage simulation methods to approximate P
(Γ |Y1:T

)
.

▶ Among the earliest examples of Bayesian likelihood-based estimation of a DSGE
model is DeJong, Ingram, and Whiteman (2000a, “A Bayesian approach to dynamic
macroeconomics,” JofE 98, 203–223) and (2000b, “Keynesian impulses versus solow
residuals: Identifying sources of business cycle fluctuations,” JAE 15, 311–329).

1. Use importance sampling (IS) to compute the posterior as functions of Γ .
2. A drawback of IS is that it is often unreliable when Γ has large dimension.
3. Another is there is little guidance about updating P

(Γ∣∣Y1:T
)

in the IS sampler.
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Introduction: The Posterior of DSGE Models, II

▶ Perhaps, the first instance of Metropolis-Hasting (MH-)MCMC simulation applied to
DSGE model estimation is Otrok (2001, “On measuring the welfare cost of business
cycles,” JME 47, 61–92).

▶ The MH algorithm proposes to update Γ using a multivariate random walk,

1. but first an initial draw of Γ from P
(Γ) is needed.

2. Update initial Γ by adding to it draws from a distribution of “shock innovations”
=⇒ MH algorithm proposes to update Γ using a multivariate random walk.

3. The decision to keep the initial Γ or to move to the updated Γ depends on

whether the latter increases L
(
Y1:T

∣∣∣Γ).
4. Repeat this procedure by sampling from the proposal distribution generated

by the multivariate random walk to update Γ .
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Introduction: The Posterior of DSGE Models, III

▶ Bayesian evaluation of estimated DSGE models relies on the Bayes factor

Bj,s
∣∣Y1:T

=
L
(
Y1:T

∣∣∣Γj ,Mj

)
L
(
Y1:T

∣∣∣Γs ,Ms
) . (EST.2)

1. The Bayes factor measures the odds the data prefer DSGE model j, Mj ,
over DSGE model s, Ms , given Γj and Γs ,

2. which involves the ratio of marginal likelihoods of Mj and Ms .

3. A marginal likelihood integrates Γj out of L
(
Y1:T

∣∣Γj ,Mj

)
.

4. Multiply Bj,s|YT by the prior odds to find the posterior odds ratio
=⇒ Rj,s|Y1:T = Bj,s|Y1:T P

(Γj)/P(Γs).
5. The log of Rj,s|Y1:T is the log of Bj,s|Y1:T net of the log of the prior odds

of these DSGE models, P
(Γj)/P(Γs).

▶ The foundations of Bayesian evaluation of DSGE models are covered by
1. Geweke (1999, “Simulation methods for model criticism and robustness

analysis,” in Berger, Bernado, Dawid, Smith (eds.), Bayesian Statistics, Vol. 6,
Oxford, UK: Oxford University Press, 275–299) and (2005, Contemporary
Bayesian Econometrics and Statistics, Hoboken, NJ: J. Wiley & Sons, Inc).

2. Fernández-Villaverde and Rubio-Ramírez (2004, “Comparing dynamic
equilibrium models to data: A Bayesian approach,” JofE 123, 153–187).

3. The fit of several NKDSGE models are assessed using Bayes factors by
Rabanal and Rubio-Ramírez (2005, “Comparing New Keynesian models
of the business cycle: A Bayesian approach,” JME 52, 1151–1166).
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Match the Solution to the Linearized NKDSGE Model to the ABCDs Model

▶ The MH algorithm depends on the likelihood of the linearized NKDSGE model to
produce posterior distributions of its parameters.

▶ Lets give the solution (SLZ.7) of the linearized NKDSGE model a state space
representation.

▶ The solution (SLZ.7) to the linearized NKDSGE model has the same form as the
system of state equations (KF.1) of the Kalman filter by equating St = St , ξt = ζt ,
AAA = ΘΘΘS, BBB = ΘΘΘζ , and Etζt+j = 0 =⇒

St+1 = AAASt + BBBξt+1, BBBBBB′ = QQQ, ξt+1 ∼ N
(
0, I

)
, (EST.3)

where standard deviations are found in the diagonal matrix BBB.

▶ The system of observation equations are revised to

Yt = FZt + CCCSt + DDDωt , DDDDDD′ = RRR, ωt+1 ∼ N
(
0, I

)
, (EST.4)

1. where F is a column vector containing parameters aimed at estimating
the sample means of Yt =⇒ Zt = 1,

2. CCC maps several of the theoretical constructs in St into the actual data Yt ,
3. ωt consists of white noise measurement errors associated with Yt ,
4. andDDD is a diagonal matrix of measurement error standard deviations.
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Review: The Kalman Filter Generates the Likelihood of the Linearized NKDSGE Model

▶ The likelihood (KS.7) of the linearized NKDSGE model, which is built up by
generating forecasts from the state space system (EST.3) and (EST.4)
period-by-period, is restated as

L
(
Y1:T

∣∣∣Γ) = T∏
t=1

fYt
∣∣Yt−1

(
Yt
∣∣∣Yt−1

)
. (EST.5)

where Γ contains the entire set of deep structural NKDSGE model parameters.

▶ The following steps compute the likelihood (EST.5) using the Kalman filter:
1. Set S1|0 = 0 and calculate P1|0 using (KF.4).
2. Construct Y1|0 = F + CCCS1|0 = F and employ (KF.8) to produce the MSE of Y1|0

=⇒ ΩΩΩY,1|0 = CCC P1|0CCC′ +RRR
(
implying ΩΩΩY,t|t−1 = CCC Pt|t−1CCC′ +RRR

)
.

3. The predictions made in Steps 1 and 2 yield the date 1 likelihood

L
(
Y1

∣∣∣Γ) = (
2π
)−0.5n

∣∣∣ΩΩΩ−1
Y,1|0

∣∣∣0.5
exp

[
−1

2

(
Y1 −F

)′ΩΩΩ−1
Y,1|0

(
Y1 −F

)]
.

4. Next, update S1|1 and its MSE P1|1 using equations (KF.10) and (KF.11).
5. Repeat steps 2, 3, and 4 for t = 2, . . . , T to obtain KF predictions of St+1|t ,

Pt+1|t , St|t , and Pt|t engaging equations (KF.16), (KF.18), (KF.15), and (KF.17) to
produce the forecast Yt|t−1 = F + CCCSt|t−1, its MSE ΩΩΩY,t|t−1, and the likelihood,

L
(
Yt
∣∣∣Yt−1, Γ) = (

2π
)−0.5n

∣∣∣ΩΩΩ−1
Y,t|t−1

∣∣∣0.5
exp

[
−1

2

(
Yt −Yt|t−1

)′ΩΩΩ−1
Y,t|t−1

(
Yt −Yt|t−1

)]
.
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Choosing Priors for the Linearized NKDSGE Model, I

▶ The likelihoods L
(
Y1

∣∣∣Γ), L
(
Y2:1

∣∣∣Y1, Γ), L
(
Y3:1

∣∣∣Y2:1, Γ), . . . , L(Yt:1∣∣∣Yt−1:1, Γ),
. . . , L

(
YT−1:1

∣∣∣YT−2:1, Γ), and L
(
YT :1

∣∣∣YT−1:1, Γ) computed at Steps 2 and 5 are

used to build up the likelihood function (EST.5) of the linearized NKDSGE model.

▶ Construction of the posterior of Γ , P(Γ∣∣Y1:T
)
, needs these likelihoods and the prior

of Γ , P(Γ); see (EST.1).

▶ Del Negro and Schorfheide (2008) discuss methods to construct P
(Γ).

1. First, break the NKDSGE model parameters into three sets; see table 2 of Del
Negro and Schorfheide (2008, p. 1201).

2. The first set contains parameters that define the steady state of the NKDSGE
model =⇒ Hall (1996) shows ties the steady state of the NKDSGE model to the
unconditional first moments of Y1:T .

3. Second set of parameters rely on preferences, technologies, and market
structure that affect endogenous mechanisms propagating exogenous shocks.

4. Along with technology, preference, and market structure parameters, Del
Negro and Schorfheide add parameters of the Taylor rule (NK.9) to this set;
see the agnostic sticky price and wage priors of tables 1 and 2 of Del Negro and
Schorfheide (2008, pp. 1200–1201).

5. The third set of parameters have AR1 coefficients and standard deviations of
the exogenous shocks; see table 3 of Del Negro and Schorfheide (2008, p. 1201).
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Choosing Priors for the Linearized NKDSGE Model, II

▶ Separate the parameter vector Γ into two parts, where the parameters of economic
interest are placed in 18×1 column vector

Γ1 =
[
h γ α ψ N0 δ ξ µp θ µW a′′ ϖ κπ κy m∗ ρR σε συ

]′
.

▶ Next group the relevant elements of Θ1 into the steady state parameter vector

Γ1,ss =
[
α N0 ξ θ m∗

]′
.

▶ The parameters responsible for endogenous propagation in the NKDSGE model

Γ1,prop =
[
h γ a′′ µp µW κπ κy ρR

]′
.

▶ The source of fluctuations in the NKDSGE model are the innovations to the
exogenous shocks with standard deviations

Γ1,exog =
[
σε συ

]′
.

▶ If the Taylor rule (NK.9) is replaced by the money supply growth rule (NK.8), its
parameters, ρm and σµ , are added to Γ1,exog and συ is deleted as is ρR from Γ1,prop.
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Choosing Priors for the Linearized NKDSGE Model, III

▶ Often priors for Γ1,ss, Γ1,prop, and Γ1,exog are drawn from normal, beta,
gamma, and inverse gamma distributions, but are not limited to these.

▶ Priors reflect your uncertainty about the NKDSGE model, but need to be
easy to communicate to the audience; see Del Negro and Schorfheide (2008).

1. Report parameters of your priors =⇒ a normal prior consists of its mean and
standard deviation while other distributions are defined by one scale and shape
as for gamma and inverse gamma distributions.

2. Present 95% coverage intervals of the priors to give a sense of your uncertainty
of the NKDSGE model parameter by parameter.
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Choosing Priors for the Linearized NKDSGE Model, IV

▶ Standard or “reference” priors found in the literature estimating NKDSGE
model using Bayesian methods are

1. consumption habit parameter h ∼ beta with mean = 0.65 and variance = 0.01
=⇒ the 95% coverage interval is

[
0.44, 0.83

]
,

2. γ ∼ gamma with a shape parameter = 2.0 and a scale parameter = 0.750
=⇒ the 95% coverage interval is

[
0.18, 4.18

]
,

3. ρR ∼ normal with mean 0.50 and standard deviation 0.13 =⇒ the 95% coverage
interval is

[
0.25, 0.75

]
, and

4. σε ∼ inverse gamma with a shape parameter = 4.0 and a scale parameter = 0.3
=⇒ the 95% coverage interval is

[
0.03, 0.28

]
.

▶ These priors are informative =⇒ beliefs reflect ex ante knowledge about the
uncertainty surrounding the NKDSGE model.

▶ An uninformative prior employs restrictions implied only by “theory.”

▶ An example is the AR1 coefficient, ρR , of the Taylor rule of the central bank.
1. Its stationarity and a policy of interest rate smoothing restricts ρR ∈

(
0.0, 1.0

)
.

2. =⇒ Truncated normal prior for ρR ∼ TN
(
0.5,1.0)

∣∣ρR ∈ (0.0, 1.0
)
, which gives

a 95% coverage interval of
[
0.03, 0.97

]
.

3. The 95% coverage interval is wide, which reflects greater uncertainty under the
uninformative prior compared with the informative prior shown above.
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Choosing Priors for the Linearized NKDSGE Model, V

▶ The remaining parameters fall into

Γ2 =
[
β ψ δ LAF

]′
.

▶ Priors are not imposed on the steady state nominal interest rate R∗ and the steady
state ratios, C∗

/
Y∗, X∗

/
K∗, and K∗

/
Y∗.

1. Instead, calibrate β (possibly using information about the sample mean
of Rt − πt+1) to estimate m∗ within the MH algorithm.

2. Next, fix the capital share, ψ and the depreciation rate, δ to ease the
burden of identifying elements in Γ1,ss

3. This approach to fixing or calibrating several model parameters dates
to the first attempts at estimating RBC models.

▶ Often the steady state of a NKDSGE model implies theoretical means of the elements
of Yt that are far from the associated sample mean.

1. Del Negro and Schorfheide (2008, p. 1197) suggest including a constant
or “add-factor” in one or more of the measurement equations (EST.4)
to bridge the gap between the theoretical and sample means.

2. This is to equivalent to adding LAF to the log likelihood, lnL
(
Y1:T

∣∣∣Γ1, Γ2),
of the linearized NKDSGE model as lnL

(
Y1:T

∣∣∣Γ1, Γ2) + lnLAF .

3. =⇒ Incorporate “extra” information into the log likelihood to prevent
inconsistent estimates of the innovations Yt − Yt|t−1.
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A Short Aside on Markov Chain Monte Carlo Methods, I

▶ Estimation of linearized NKDSGE models is hindered by the problem of mapping

1. from L
(
Y1:T

∣∣∣Γ1, Γ2)P(Γ1) to P
(Γ1∣∣∣YT , Γ2) inherent in (EST.1) is non-analytic.

2. =⇒ The posterior P
(Γ1∣∣∣YT , Γ2) has a non-standard distribution.

▶ Classical simulation methods (i.e., II) or importance sampling (IS) could be applied to
estimate NKDSGE model, but a high dimensional Γ1 creates problems.

1. Although the KF makes is easy to construct L
(
Y1:T

∣∣∣Γ1, Γ2), its numerical

optimization with respect to Γ1 with many elements is difficult.
2. There is little guidance about choosing an importance distribution, G

(Γ1), that

reliably mimics P
(Γ1∣∣∣YT , Γ2), especially across repeated draws from G

(Γ1).
▶ Markov Chain Monte Carlo (MCMC) methods provide relief to the problem of

computing P
(Γ1∣∣∣YT , Γ2) when Γ1 is of high dimension.

1. A Markov chain is a stochastic process, which evolves according to the
transition kernel p

(
z, y

)
=⇒ the conditional density of y given z or p

(
y
∣∣z).

2. The kernel p
(
z, y

)
is the continuous analogue to the discrete transition

probability pi,j = P
(
Z t+1 = j

∣∣Z t = i), which is probability of moving
from state i to state j
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A Short Aside on Markov Chain Monte Carlo Methods, II
▶ A Markov chain is so named because it has the Markov property

f(Z1 , ...,ZT
∣∣Z0 =z0

)(z1, . . . , zT
)
= p

(
z0, z1

)
p
(
z1, z2

)
. . .p

(
zT−2, zT−1

)
p
(
zT−1, zT

)
.

1. Given Z0 = z0, assume the joint density of
{
Z t
}T
t=1 is the multiplicative sum of

the kernels (i.e., the conditional densities) of the realized states
{
zt
}T
t=1.

2. =⇒ Conditional on the current state z, the probability the stochastic process
realizes a value in S, where S is subset of the real line, S ⊆ R, is denoted

P
(
z, S

)
=
∫
S

p
(
z, y

)
dy , and the jth step ahead probability is P j

(
z, S

)
=
∫
R

P
(
z, dy

)
P j−1(y , S

)
.

▶ Next, define an invariant density πy for the kernel p
(
z, y

)
πy =

∫
R
πzp

(
z, y

)
dz.

1. =⇒ The probability the stochastic process is in state y at any date t is
marginalized (i.e., remove or integrate out all other states) with respect
to the state at date t−1.

2. Or πy answers the question, “What is the probability of being in state z
at date t−1, πz , and transiting to state y at date t with probability p

(
z, y

)
?”

3. The (unconditional) probabilities are restricted by
∫
πydy = 1.
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A Short Aside on Markov Chain Monte Carlo Methods, III

▶ Is the invariant density πy unique presuming it exists?

▶ Definition: A Markov chain is irreducible if a (non-negligible) positive probability
exists of moving from any state z at date t to any state y in a finite span of time.

▶ Definition: A Markov chain is recurrent if every state z has probability = 1 of being
“hit” (at least once) in a finite span of time.

▶ Definition: A Markov chain is aperiodic if the number of steps needed to move from
any z to itself is not a constant integer (or a multiple thereof), where the existence
of only one aperiodic state is necessary to show the Markov chain is irreducible.

▶ Theorem: Assume π· is an invariant distribution for P
(
z, ·

)
and it is π·-irreducible

=⇒ P
(
·, ·
)

is positive recurrent (exists) and its unique invariant distribution is π·.
1. The idea is that limj -→∞ P j

(
·, ·
)

converges to π· for almost all z.
2. This holds for all z if the number of times this state is realized

is unbounded =⇒ P
(
z, ·

)
is Harris recurrent.

▶ Theorem: Given P
(
z, ·

)
is positive recurrent (exists) and its unique invariant

distribution is π·, it is π·-irreducible aperiodic, positive recurrent, and
its invariant distribution is π·.
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Why Do MCMC Algorithms Differ from Standard Monte Carlo Methods?

▶ Consider a univariate random variable Zt drawn from a (stationary) IID distribution.

▶ Suppose there is function of Zt , k
(
Zt
)
, which is a known stochastic process, but is

not analytic, where the goal is to estimate the first two moments of Zt .
1. Denote the first population moment as µZ = E

{
k
(
Zt
)}

, but cannot be estimated
using sample data =⇒ use a central limit theorem to show the estimator of µZ
is µ̂Z ∼ N

(
µZ , T−1σ2

Z

)
, where the second population moment is σ2

Z = var
(
Zt
)
.

2. Assume there is way to simulate
{
Zt
}T
t=1 =⇒ using Monte Carlo methods

approximate µ̂Z =
∑T
t=1 k

(
zt
)
, where zt are simulated draws from Zt ∼ IID.

3. The simulation estimator of the variance of Zt is σ̂2
Z = T−1

∑T
t=1

[
k
(
zt
)
− µ̂Z

]2
.

▶ Suppose
{
Zt
}T
t=1 evolves as a stationary Markov chain =⇒ the conditional distribution

of ZT+1 relies only on ZT , not
{
Zt
}T
t=1, and the unconditional distribution remains IID.

1. The Markovian property does not necessarily carry over to k
(
Zt
)
=⇒ the serial

dependence inherent in the Markov chain alters the estimator of σ2
Z .

2. The distribution of µ̂Z is unchanged, but population variance of Zt becomes

σ2
Z = var

(
Zt
)
+ 2

∑∞
j=1 cov

(
k
(
zt
)
, k
(
zt+j

))
.

3. In practice, have to confront a MCMC simulator inducing serial dependence in
σ2
Z =⇒ need to control this dependence for the simulator to converge.

▶ Under Harris recurrence, the CLT is valid for any initial distribution and a law of
motion for the transition probabilities, given the CLT holds for one initial distribution
and the same law of motion =⇒ the MCMC converges to a invariant distribution.
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A Short Aside on the Metropolis-Hasting Algorithm, I

▶ The MC definitions and theorems form the bedrock of MH-MCMC.

▶ Definition: A kernel q
(
·, ·
)

is reversible, given f
(
z
)
q
(
z, y

)
= f

(
y
)
q
(
y , z

)
.

▶ Suppose f
(
z
)
q
(
z, y

)
> f

(
y
)
q
(
y , z

)
, which is not reversible kernel =⇒ the case for a

proposal density in a MH algorithm.

▶ The Metropolis-Hasting algorithm flips q
(
y , z

)
into being a reversible kernel.

1. Choose a kernel c
(
·, ·
)

such that f
(
z
)
c
(
z, y

)
q
(
z, y

)
= f

(
y
)
c
(
y , z

)
q
(
y , z

)
; see

Chib and Greenberg (1995, “Understanding the Metropolis-Hasting algorithm,”
The American Statistician 49, 327–335).

2. =⇒ The kernel c
(
z, y

)
contains information whether there is a high probability

in moving to state y from state z given the proposed move is described by the
transition kernel is q

(
z, y

)
.

3. Given the proposed move c
(
y , z

)
= 1, f

(
z
)
c
(
z, y

)
q
(
z, y

)
= f

(
y
)
q
(
y , z

)
=⇒ c

(
z, y

)
= min

{
f
(
y
)
q
(
y , z

)
f
(
z
)
q
(
z, y

) , 1

}
, or c

(
z, y

)
= 0.

4. The MH density c
(
z, y

)
serves as the criterion to decide whether to accept the

move to state y from state z.
5. Note the restriction f

(
z
)
q
(
z, y

)
≠ 0 is necessary for c

(
z, y

)
to exist, but, as we

will see, for constructing P
(Γ1∣∣∣YT , Γ2) this should not be an issue.
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A Short Aside on the Metropolis-Hasting Algorithm, II

▶ How to choose q
(
·, ·
)

to operate the MH-MCMC?

▶ MH-MCMC approximates the posterior of the parameter vector y by
simulation.

1. Metropolis part of MH algorithm restricts innovations to the proposal
distribution be drawn from a symmetric distribution. (Hastings part loosens
this restriction on the innovations to the proposal updating law of motion.)

2. The MH law of motion proposes an update of the posterior starting from the
most recent acceptance to the posterior plus the symmetrically distributed
innovations =⇒ equate q

(
·, ·
)

with a random walk plus Gaussian innovations.

3. Thus, q
(
y , z

)
= q

(
z, y

)
=⇒ innovations to the random walk are drawn from a

symmetric distribution.

4. An implication is a move to a higher point in the density y from z, f
(
y
)
> f

(
z
)
,

occurs with certainty while the converse can occur but with probability < 1.

5. The result is the MH decision criterion becomes

c
(
z, y

)
= min

{
f
(
y
)

f
(
z
) , 1

}
.
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A Short Aside on the Metropolis-Hasting Algorithm, III

▶ What is f
(
·
)
?

▶ The MH algorithm draws from a proposal distribution with transition law
of motion q

(
y , z

)
to construct the posterior P

(
y
)
.

1. The only restriction is proportionality of f
(
y
)

and P
(
y
)
=⇒ P

(
y
)
∝ f

(
y
)
.

2. This is a weak restriction, which helps to explain the application of the
MH algorithm to many different kinds of estimation problems.

3. =⇒ No need to find a f
(
y
)

that is an exact duplication of P
(
y
)
.

4. MH algorithm dispenses with computing the normalizing constant of f
(
y
)
.

5. =⇒ In this case, the normalizing constant is the divisor of f
(
y
)

that forces
its probability density function to sum to one.

▶ The weak proportionality restriction means the MH algorithm is a tool
1. to obtain the posterior of a model by equating f

(
·
)

to the likelihood of
the model crossed by the prior distribution of the model coefficients.

2. =⇒ This proportionality relationship is described by (EST.1) for the
NKDSGE model and is reproduced here

P
(Γ1∣∣∣Y1:T , Γ2) ∝ L

(
Y1:T

∣∣∣Γ1, Γ2)P(Γ1).
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Overview of MH-MCMC Sampling for the NKDSGE Model

▶ The posterior distribution of the NKDSGE model parameters in Γ1 is characterized
using the MH-MCMC algorithm.

1. The MH-MCMC algorithm is initialized with Γ1 conditional on Γ2 =⇒ need a
“guess” of Γ1 and calibration of Γ2 to begin the sampler.

2. The initial Γ1 is passed to the Kalman filter routines described by equations

(KF.15)–(KF.18) to produce an estimate of lnL
(
Y1:T

∣∣∣Γ1, Γ2).
3. Next, employ the MH random walk law of motion to update the initial Γ1 to

a new proposal of the posterior of the linear approximate NKDSGE model.

4. Input the proposed update of Γ1 into the Kalman filter to generate a second
estimate of the log likelihood of the linear approximate NKDSGE model.

5. Engage the MH decision criterion to decide whether the initial or proposed
update of Γ1 and the associated likelihood passes into the next step of sampler.

6. Given this decision, the next step of the MH algorithm obtains a new proposal
of Γ1 using the random walk law of motion, which produces an estimate of the
log likelihood at this new update.

7. Compare the updated likelihood with the likelihood obtained in the previous
MH step using the MH decision criterion to choose the likelihood and Γ1
carried into the next MH step.

8. Repeat the process J steps to create the posterior of the linear approximate
NKDSGE model, P

(Γ1∣∣Y1:T ; Γ2).
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A MH-MCMC Algorithm, I
▶ Apply the MH-MCMC sampler to the linearized NKDSGE model in the following steps.

1. Initialize the MH algorithm with the vector of NKDSGE model parameters Γ̂1,0.

2. Pass Γ̂1,0 to the KF routines (KF.15)–(KF.18) to obtain an initial estimate of the

L
(
Y1:T

∣∣∣Γ̂1,0, Γ2).
3. Propose an update of Γ̂1,0, Γ1,1, using the MH random walk law of motion

Γ1,1 = Γ̂1,0 + ϑΩΩΩ0.5Γ1 ς1, ς1 ∼NID
(
0d, Id

)
,

where ϑ is a scalar that controls the size of the “jump” of the proposed MH
random walk update,ΩΩΩΓ1 is the Cholesky decomposition of the covariance

matrix of Γ1, and d (= 18) is the dimension of Γ1. Obtain lnL
(
Y1:T

∣∣∣Γ1,1, Γ2) by

operating the Kalman filter inputting Γ1,1.
4. The MH algorithm employs a two-stage procedure to decide whether to keep

the initial Γ̂1,0 or move to the updated proposal Γ1,1. First, calculate

c1 = min

L
(
Y1:T

∣∣∣Γ1,1, Γ2)P(Γ1,1)
L
(
Y1:T

∣∣∣Γ̂1,0, Γ2)P(Γ̂1,0) , 1

 ,
where P

(Γ1,1) and P
(Γ̂1,0) are the priors at Γ1,1 and Γ̂1,0. Second, draw a

uniform random variable u1 ∼ U
(
0, 1

)
to select Γ̂1,1 = Γ1,1 and the

counter ℘ = 1 if u1 ≤ c1, otherwise Γ̂1,1 = Γ̂1,0 and ℘ = 0.
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A MH-MCMC Algorithm, II

5. Repeat steps 3 and 4 using the MH random walk law of motion

Γ1,j = Γ̂1,j−1 + ϑΩΩΩ0.5Γ1 ςj , ςj ∼ NID
(
0d×1, Id

)
, (EST.6)

for j = 2, 3, . . . , J and draw the uniform random variable uj ∼ U
(
0, 1

)
to test

cj = min

 L
(
Y1:T

∣∣∣Γ1,j , Γ2)P(Γ1,j)
L
(
Y1:T

∣∣∣Γ̂1,j−1, Γ2)P(Γ̂1,j−1

) , 1

 ,
to equate Γ̂1,j to Γ1,j conditional on uj ≤ cj ; otherwise Γ̂1,j = Γ̂1,j−1. The latter
implies updating the counter to ℘ = ℘ + 0 while the former has ℘ = ℘ + 1.

▶ Steps 1–5 of the MH-MCMC algorithm produce the posterior as shown in (EST.1),

P
(Γ̂1∣∣Y1:T ; Γ2), of the linear approximate NKDSGE model by drawing from

{Γ̂1,j}Jj=1
.

▶ The decision in steps 4 and 5 to accept the updated proposal, Γ1,j , which is grounded
on the acceptance criterion uj ≤ cj , is akin to moving to a higher point on the

likelihood surface, L
(
Y1:T

∣∣∣Γ1, Γ2).
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A MH-MCMC Algorithm, III

▶ The support of the proposal Γ1,j ∈ (−∞, ∞), given the random walk (EST.6) is the
generating process =⇒ a random variable with a mean zero normally distributed
innovation that has a homoskedastic variance has support on the entire real line.

▶ However, priors of the habit, Frisch labor supply elasticity, and interest rate rule
smoothing parameters, and standard deviation of the innovation to the random walk
TFP shock are

1. h ∼ Beta with shape parameters
[
α, β

]
=
[
14.1375, 7.6125

]
has support on the

unit interval
(
0, 1

)
,

2. γ ∼ G
(
α, θ

)
with a shape parameter α = 2.0 and a scale parameter θ = 0.750

has support on the positive part of the real line,
(
0, ∞

)
,

3. ρR ∼ TN
(
0.5,1.0)

∣∣ρR ∈ (0.0, 1.0
)

has support on the unit interval
(
0, 1

)
, and

4. σε ∼ IG
(
α, θ

)
a shape parameter α = 4.0 and a scale parameter β = 0.3 has

support on the positive part of the real line,
(
0, ∞

)
.

▶ This is a problem.

1. The support of the proposal Γ1,j is not the same as the support of the target

distribution =⇒ the priors embedded in P
(Γ1).

2. This creates an asymmetry in the MH criterion because the kernel from Γ̂1,j−1

to Γ1,j is not reversible =⇒ the target of the MH-MCMC sampler is incorrect.
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A MH-MCMC Algorithm, IV

▶ There are at least two fixes to the problem of differing supports for the proposal and
target of a MH-MCMC sampler.

▶ Implicit in applying the MH-MCMC sampler to estimate the linearized NKDSGE
model, given these priors, is a rejection sampler.

1. A proposed draw that gives h, ρR ∉ (0, 1
)

and γ, σε ≤ 0 are tossed out.

2. Since the kernel from Γ̂1,j−1 to Γ1,j is not reversible,

3. the normalizing constant that equates the posterior with the likelihood
multiplied by the prior cannot be ignored in the MH criterion.

4. For a univariate example that corrects the MH criterion when the sampler
involves rejection sampling, see the Blog of Professor Darren Wilkinson
(4 June 2012).

▶ Another approach starts from the observation that

1. the transition kernels of the MH criterion, q
(Γ̂1,j−1, Γ1,j)/q(Γ1,j , Γ̂1,j−1

)
,

2. can be adjusted for the restrictions on the supports of the targets.

3. The adjustments are the log derivative of the proposals w/r/t the
targets on their restricted supports.
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A MH-MCMC Algorithm, V

▶ A different correction of q
(
·, ·
)

relies on an invertible transformation function, g(·).
1. g(·) maps the random walk proposal x from the entire real line to the

restricted interval of the target =⇒ x = g(g−1
(
x̂
)
+ ς

)
, where ς ∼ N

(
0, σ2

ς
)
.

2. Since x has the density f (·), q(x̂, x) = fN(g−1
(
x̂
)
, σ2
ς
) ( g−1

(
x
)) ∂g−1

(
x̂
)

∂x
.

3. Note the marginals fN(g−1
(
x̂
)
, σ2
ς
) ( g−1

(
x
))

and fN(g−1
(
x
)
, σ2
ς
) (g−1

(
x̂
))

negate in the ratio of the transition kernels

q
(
x̂, x

)
q
(
x, x̂

) =
∂g−1

(
x̂
)/
∂x̂

∂g−1
(
x
)/
∂x

=
(
x̂ − a

) (
b − x̂

)
(x − a) (b − x) ,

where
[
a, b

]
are lower and upper lower bounds of restrictions on the target.

▶ Details are in Transformed Proposal Distributions by Johan Lindström.
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A MH-MCMC Algorithm, VI

▶ Since the proposal is generated by a random walk with Gaussian innovations, an
obvious choice is g(x) = exp

(
x
)
.

▶ Suppose all parameters have restricted support . . . an implication is the random walk
proposal is written in (natural) logs

ln Γ1,j = ln Γ̂1,j−1 + ϑΩΩΩ0.5Γ1 ςj , ςj ∼ NID
(
0d×1, Id

)
.

▶ The corrected MH criterion of the MH-MCMC sampler applied to the NKDSGE model is

cj = min

 L
(
Y1:T

∣∣∣Γ1,j , Γ2)P(Γ1,j)
L
(
Y1:T

∣∣∣Γ̂1,j−1, Γ2)P(Γ̂1,j−1

)

(Γ̂1,j−1 − a

)(
b − Γ̂1,j−1

)
(Γ1,j − a)(b − Γ1,j)

−1

, 1

 .

▶ The research blog of Umberto Picchini has details on this and more advice for
coding MH-MCMC samplers.
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A MH-MCMC Algorithm: Additional Computational Issues

▶ There are several more issues that have to be resolved to run the MH-MCMC
algorithm to create P

(Γ̂1|Y1:T ; Γ2).
▶ The issues concern

1. obtaining an Γ̂1,0 to initialize the MH-MCMC,
2. computing the covariance matrix of Γ1,ΩΩΩΓ1 ,
3. determining the number of steps, J, to run the MH-MCMC sampler,
4. fixing ϑ to achieve the optimal acceptance rate ℘

/
J for the proposal Γ1,j ,

5. and determining whether the MH-MCMC simulator has converged.

▶ Rules for improving the MH-MCMC simulator
1. by increasing the efficiency of the random walk law of motion (EST.6) for

updating the proposal Γ1,j
2. to find optimal acceptance rates of the MH-MCMC sampler
3. are reviewed in Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin (2013,

Bayesian Data Analysis, third edition Chapman and Hall/CRC: Boca
Raton, FL), especially ch. 11.4, pp. 280–291.
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A MH-MCMC Algorithm: Initializing the MH-MCMC Sampler

▶ Step 1 of the MH-MCMC algorithm fails to explain the process engaged to obtain Γ̂1,0.

▶ Calculate Γ̂1,0 using classical optimization methods.

1. First, draw 100 samples of Γ1 from P
(Γ1) =⇒ Γ1,i, i = 1, . . . , 100.

2. Use Γ1,i as a starting value to “estimate” Γ1 by applying a classical
optimizer to the log likelihood of the linear approximate NKDSGE
model conditional on Γ2 =⇒ repeat this process for all 100 Γ1,is.

3. Use these MLEs to find the mode of the posterior distribution of Γ1
=⇒ equate the mode of Γ1 to the initial condition in a “burn-in” stage
of the MH-MCMC algorithm. Or compute this initial condition as the
mean or median of the 100 MLE of Γ1.

▶ The burn-in stage of the MH-MCMC algorithm aims to eliminate dependence
of P

(Γ̂1|YT ; Γ2) on the initial condition Γ̂1,0.

1. The dependence is annihilated by drawing Γ̂1,0 from a distribution that

resembles P
(Γ̂1∣∣Y1:T ; Γ2).

2. Run JBR MH steps with ϑ = 1 andΩΩΩΓ1 = Id to finish the burn-in stage.

3. The last MH step of the burn-in yields Γ̂1,0, which initializes the final JP
steps of the final stage of the MH-MCMC algorithm, where J = JBR + JP .
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A MH-MCMC Algorithm: Covariance Matrix of Parameters

▶ The burn-in steps produce JBR estimates of Γ1,
{Γ1,j}JBRj=1

.

▶ Standard practice has been to use these estimates of Γ1 to compute

1. the empirical covariance matrixΩΩΩΓ1 needed in the MH law of motion (EST.6)
to generate proposed updates Γ1,j when making posterior draws.

2. Either the mean of
{Γ1,j}JBRj=1

, Γ1,BR , or the last burn-in draw Γ1,JBR can be used

3. to equateΩΩΩΓ1 to the inverse of the Hessian or to the outer product

1
JBR

JBR∑
j=1

[Γ1,j − Γ1,ℓ] [Γ1,j − Γ1,ℓ]′ , ℓ = BR or JBR .

4. In most cases, the Hessian is computed numerically using a coded function.

5. SometimesΩΩΩΓ1 is re-computed one or more times after the burn-in to improve
the quality of the posterior distribution.
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A MH-MCMC Algorithm: Adaptive MH-MCMC

▶ An alternative to an empirical covariance matrix is to estimateΩΩΩΓ1 usingΩΩΩΓ1 ,j−1 and

the history Γ1,1:j in the mean Γ1,1:j in an automatic or adaptive algorithm.

▶ At step j of the MH-MCMC, an adaptive algorithm Metropolis computes

ΩΩΩΓ1 ,j = j − 1
j

ΩΩΩΓ1 ,j−1 +
ϑ2

j

[
j Γ1,1:j−1Γ ′1,1:j−1 −

(
j + 1

)Γ1,1:jΓ ′1,1:j + Γ1,jΓ ′1,j + ϵId] ,
is proposed by Haario, Saksman, and Tamminen (1999, “Adaptive proposal
distribution for random walk Metropolis algorithm,” Computational Statistics 14,
375–395) and (2001, “An adaptive Metropolis algorithm,” Bernoulli 7, 223–242).

▶ A different approach aims to robustify the MCMC by adaptingΩΩΩΓ1 to achieve an
acceptance rate a«℘ as proposed by Vihola (2012, “Robust adaptive Metropolis
algorithm with coerced acceptance rate,” Statistics and Computing 22, 997–1008).

1. Vihola builds the robust adaptive Metropolis (RAM) algorithm around

ΩΩΩΓ1 ,j = ΩΩΩ0.5Γ1 ,j−1ΩΩΩ
0.5 ′Γ1 ,j−1 + ΩΩΩ0.5Γ1 ,j−1

min
(
1, djι

)
×
(℘j

J
− a«℘

) ςjς
′
j∣∣∣∣ςj∣∣∣∣2

ΩΩΩ0.5 ′Γ1 ,j−1,

where he suggests setting ι to −2
/
3 and ℘j is the acceptance count at step j.

2. The RAM is guaranteed to be positive definite while estimated empirical
covariance matrices often fail this requirement.
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A MH-MCMC Algorithm: Convergence of the Chains

▶ The scale of the “jump” from Γ1,j−1 to Γ̂1,j determines the speed at which the

proposals Γ1,j converge to P
(Γ̂1∣∣Y1:T ; Θ2

)
within the MH-MCMC simulator.

▶ The speed of convergence depends on J as well as on ϑ andΩΩΩΓ1 .

1. The number of steps JP of the final stage of the MH-MCMC simulator has
to be sufficient to allow for convergence.

2. The choice of J is sensitive to the dimension of Γ1 and the structure of the
NKDSGE model.

3. Setting J = 500,000, where JP = 2JBR , is common for NKDSGE models similar
to the model discussed in these notes.

4. Nonetheless, the choice J is most likely going to many times larger for larger,
more complex, and more nonlinear NKDSGE models.

▶ Another key to control the speed of convergence of the MH-MCMC sampler is the
scalar jump coefficient ϑ.

1. Gelman et al (2013) recommend greatest efficiency of the MH law of motion
(EST.6) is using ϑ = 2.4

/√
d.

2. A practice widely employed when estimating NKDSE models using the
MH-MCMC algorithm sampler is to fix ϑ by repeatedly running the algorithm
on the linearized NKDSGE model until an acceptance rate
℘
/
J ∈

[
0.23, 0.40

]
is obtained.
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A MH-MCMC Algorithm: Convergence Diagnostics

▶ Standard practice is to “test” the convergence of the MH-MCMC simulator along
with requiring ℘

/
J ∈

[
0.23, 0.40

]
.

▶ There is no theory giving conditions to choose J optimally for a MCMC sampler.

▶ Instead, there are several diagnostics to assess whether the chains or sequences

in
{Γ̂1,j}Jj=1

have converged or mixed.

▶ Remember a random walk MH-MCMC produces serially correlated draws from
the posterior of κπ .

▶ The diagnostics provide information to infer whether a chain or the chains are
non-stationarity.

▶ Non-stationarity can appear as unit root or near unit root behavior (i.e., serial
correlation greater than 0.75), excessive volatility, and/or breaks in the means
or variances in a chain or chains.
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A MH-MCMC Algorithm: The Trace Plot

▶ One diagnostic is to plot each of the d chains in
{Γ̂1,j}Jj=1

.

1. A figure displaying the time series, say, of the Taylor rule parameter, κπ ,
from j = 1, . . . , J is called a trace plot.

2. A trace plot can show the extent of non-stationarity or serial correlation
in the chain of κπ .

3. There should not be (a) drift up or down (i.e., trend behavior), (b) flat
sequences (i.e., no change), (c) shifts up or down across sub-samples,
and/or (d) bursts of volatility in the trace plot.
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A MH-MCMC Algorithm: ACF and ESS as Convergence Diagnostics

▶ Another diagnostic is to compute and plot the autocorrelation function (ACF) of each

of the d chains in
{Γ̂1,j}Jj=1

.

1. Compute the ACF, say, for first 200 lags of the J posterior draws of κπ .

2. The plot of the ACF show the serial correlation in the chain of κπ .

3. The rule of thumb is that the first-order ACF should be less than 0.75 to be
reassured that the chain is far from a unit root, but a ACF

(
1
)
< 0.6 is better

=⇒ the ACF needs to show a fast decay to zero.

▶ The ACF is also useful for computing the effective sample size, JESS =⇒ an estimate
of the number of independent draws from the posterior.

1. The asymptotic mean of a correlated time series from a single chain is

lim
J -→∞

J var (κπ ) =
1 + 2

∞∑
j=1

ACF
(
j
) var

(
κπ
∣∣∣Y1:T

)
.

2. If the posterior draws are truly independent,

JESS =
J

1 + 2
∑∞
j=1 ACF

(
j
) .

3. Since the goal is to run the chains long enough to converge, the asymptotic
result is a reasonable criterion.
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A MH-MCMC Algorithm: R̂ Statistic of Gelman et al

▶ Another diagnostic to examine the convergence of the MH-MCMC simulator is the R̂
statistic of Gelman and Rubin (1992, “Inference from iterative simulation using
multiple sequences,” Statistical Science 7, 457–472).

▶ The R̂ statistic compares the variances of chains within the sequence
{Γ̂1,j}Jj=1

to the

variance across several sequences produced by the MH-MCMC simulator, given

different initial conditions, Γ̂1,0; see Gelman et al. (2013, pp. 283–286).

1. These different initial conditions are produced using the same methods already
described with one exception.

2. The initial condition for the burn-in stage of the MH-MCMC algorithm is most
often set at the next largest mode of the posterior distribution obtained by
applying the classical optimizer to the likelihood of the linear approximate
NKSDSGE model, where this process is repeated, at least, three to five times.

3. Gelman et al. (2013) suggest the check is R̂ < 1.1 element by element in Γ̂1.

4. If the check fails for any element of Γ̂1 across the posteriors of the MH-MCMC
chains, there is excessive variation relative to the variance within the chains.

5. When R̂ ≫ 1.1 is large across the d elements of Γ̂1, Gelman et al suggest raising
J until convergence is achieved, according to R̂ < 1.1.

Jim Nason
(
Lecture: Introduction to NK-DSGE Models

)
NK-DSGE Model: Construct, Solve, and Estimate



A NKDSGE Model, Its Linearization, and Solution

A Brief Review of the Kalman Filter & Smoother

Bayesian Analysis of Linearized NKDSGE Models

Generating the Model’s Likelihood

Placing Priors on the NKDSGE Model

Details about the MH-MCMC Simulator

A MH-MCMC Algorithm: Geweke Test of Subsamples

▶ Another diagnostic to evaluate the convergence of the MH-MCMC simulator
is proposed by Geweke (2005).

▶ Geweke (2005) advocates a convergence test examining the means of
sub-samples within the sequence of each element of Γ̂1,j , j = 1, . . . , J.

1. Let κπ,J1 and κπ,J2 denote the averages of the first J1 draws
and the last J2 draws of κπ , where, for example, J1 = 0.15J
and J2 = 0.5J .

2. For the hypothesis κπ,J1 − κπ,J2 = 0, the test statistic is

κπ,J1 − κπ,J2√
J−1

1 VJ1

(
0
)
+ J−1

2 VJ2

(
0
) ,

where VJ1

(
0
)

and VJ2

(
0
)

are the long-run variances (i.e., spectral

densities) of the first J1 draws and the last J2 draws of κπ .

3. This is a test of the equality of the means of two populations in which
the variances are known, but need to be adjusted for serial correlation
in the populations =⇒ a type of Z–test ∼ N

(
0, 1

)
.
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A MH-MCMC Algorithm: Convergence Diagnostics, Finis

▶ There are a plethora of alternative diagnostics to judge the convergence
of a MH-MCMC simulator.

▶ Many of these diagnostics are discussed in Roy (2019, “Convergence
diagnostics for Markov chain Monte Carlo,” unpublished manuscript,
arXiv:1909.11827v2) available at https://arxiv.org/abs/1909.11827.

▶ Suppose after examining several diagnostics, the means of the chains
seem stationary, but the ACF(1) is closer to one than 0.75.

▶ In this case, the last resort is to thin the posterior distribution.

▶ Thinning is a procedure that tosses out every nj draw from the posterior.

▶ Goal is to reduce the ACFs by thinning out draws contributing to the serial
correlation =⇒ the chains are stationary and close to serially uncorrelated.

▶ A procedure to choose nj efficiently in a way that is built
1. on the trade-off between less serial correlation and the relative cost of

updating the MCMC sampler to computing the likelihood is developed by
2. Owen (2017, “Statistically efficient thinning of a Markov chain sampler,”

Journal of Computational and Graphical Statistics 26(3), 738–744).

Jim Nason
(
Lecture: Introduction to NK-DSGE Models

)
NK-DSGE Model: Construct, Solve, and Estimate

https://arxiv.org/abs/1909.11827

	A NKDSGE Model, Its Linearization, and Solution
	The NKDSGE Model's Optimality & Equilibrium Conditions
	Stochastic Detrending & the Deterministic Steady State
	The Linear Approximate NKDSGE Model and Its Solution

	A Brief Review of the Kalman Filter & Smoother
	The Kalman Filter's Nuts and Bolts
	The Kalman Smoother Algorithm
	The Likelihood via the Kalman Filter

	Bayesian Analysis of Linearized NKDSGE Models
	Generating the Model's Likelihood
	Placing Priors on the NKDSGE Model
	Details about the MH-MCMC Simulator


